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Abstract: Indonesia has a variety of ethnic languages, most of which belong to the same language
family: the Austronesian languages. Due to the shared language family, words in Indonesian
ethnic languages are very similar. However, previous research suggests that these Indonesian
ethnic languages are endangered. Thus, to prevent that, we propose the creation of a bilingual
dictionary between ethnic languages, using a neural network approach to extract transformation
rules, employing character-level embedding and the Bi-LSTM method in a sequence-to-sequence
model. The model has an encoder and decoder. The encoder reads the input sequence character
by character, generates context, and then extracts a summary of the input. The decoder produces
an output sequence wherein each character at each timestep, as well as the subsequent character
output, are influenced by the previous character. The first experiment focuses on Indonesian and
Minangkabau languages with 10,277 word pairs. To evaluate the model’s performance, five-fold
cross-validation was used. The character-level seq2seq method (Bi-LSTM as an encoder and LSTM as
a decoder) with an average precision of 83.92% outperformed the SentencePiece byte pair encoding
(vocab size of 33) with an average precision of 79.56%. Furthermore, to evaluate the performance of
the neural network model in finding the pattern, a rule-based approach was conducted as the baseline.
The neural network approach obtained 542 more correct translations compared to the baseline. We
implemented the best setting (character-level embedding with Bi-LSTM as the encoder and LSTM as
the decoder) for four other Indonesian ethnic languages: Malay, Palembang, Javanese, and Sundanese.
These have half the size of input dictionaries. The average precision scores for these languages are
65.08%, 62.52%, 59.69%, and 58.46%, respectively. This shows that the neural network approach can
identify transformation patterns of the Indonesian language to closely related languages (such as
Malay and Palembang) better than distantly related languages (such as Javanese and Sundanese).

Keywords: natural language processing; low-resource language; Indonesian ethnic languages;
bilingual lexicon induction; sequence-to-sequence model

1. Introduction

Indonesia’s riches extend beyond its natural resources, such as minerals, vegetation,
and fauna. The archipelago is highly diversified, with a variety of ethnic languages in
Indonesia, which are mostly part of the Austronesian language family. Since prehistoric
times, Indonesian ethnic languages have evolved, resulting in a different language for
each ethnic group [1]. Based on the similarity matrix utilizing the ASJP database [2], most
Indonesian ethnic languages are closely related and similar.

Currently, the extinction of ethnic languages in Indonesia is a pressing issue that
has attracted the attention of scholars, particularly linguists. The Summer Institute of
Linguistics has stated that these local languages are endangered and may cease to be
spoken in Indonesia. Therefore, we started the Indonesia Language Sphere project, which
aims to create comprehensive bilingual dictionaries between the ethnic languages using a
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neural network and crowdsourcing approach, in order to conserve local languages on the
verge of extinction [3].

We expect that this project will expand the vocabulary of ethnic languages and that
more people will learn and use them. The generated bilingual dictionary can be trans-
formed into a bilingual dictionary service, and further integrated with the Google Translate
service as a composite service on the Language Grid to enable a pivot-based hybrid ma-
chine translation, bridging the gap between high-resource languages and low-resource
languages [4,5].

Indonesian ethnic languages are low-resource languages with a limited amount of
language resources, such as bilingual dictionaries. We chose Minangkabau, Malay, Palem-
bang, Javanese, and Sundanese as the languages to implement the proposed method in
this study due to the availability of the bilingual dictionaries obtained from the results
of our previous study [6]. Moreover, the Indonesian and Minangkabau languages have
significant lexical similarities; thus, we presume they have several phonetic transformation
rules, from Indonesian to Minangkabau and vice versa. For example, there appears to be
a rule in Indonesian and Minangkabau where the last phoneme “a” in Indonesian tends
to turn “o” in Minangkabau, while the middle phoneme “ia” appears to turn “i”. There
are many more patterns in these languages. Although this rule is not always applicable,
it can help to predict a rough translation as a preliminary translation. To the best of our
knowledge, no previous studies have explored approaches to bilingual lexicon induction
using neural network targeting transformation rules between closely related languages.
This study proposes a neural network-based bilingual lexicon induction for Indonesian
ethnic languages with the following research goals:

• Model a neural network-based bilingual lexicon induction between Indonesian and
Minangkabau, using long short-term memory (LSTM).

• Evaluate how well the model detects the transformation rules between Indonesian
and Minangkabau.

• Apply the model to Malay, Palembang, Javanese, and Sundanese languages.

2. Bilingual Lexicon Induction

Creating a bilingual dictionary is the first crucial step toward enriching low-resource
languages. Particularly for closely related languages, it has been shown that the constraint-
based approach helps induce bilingual lexicons from two bilingual dictionaries via the
pivot language [7,8]. However, implementing the constraint-based approach on a large
scale to create multiple bilingual dictionaries is still challenging, particularly in determining
the constraint-based approach’s execution order to reduce the total costs. Plan optimization
using the Markov decision process is essential when composing the order of creation for
bilingual dictionaries, considering the methods and their costs [6,9].

Heyman et al. [10] proposed a method for transforming bilingual lexical induction into
a binary classification task in the biomedical domain for English to Dutch. They created a
classifier that predicts whether a pair of words translates using character and word level,
employing the LSTM method. Their study showed that character-level representations
successfully induce bilingual lexicons in the biomedical domain.

Zhang et al. [11] presented a character-level sequence-to-sequence learning method,
RNNembed, for English-to-Chinese translation. Specifically, the recurrent neural network
(RNN) is embedded into an encoder–decoder framework and generates character-level se-
quence representation as input. The dimension of the input feature space can be significantly
reduced and eliminates the need to handle unknown or rare words in sequences. Experi-
mental results demonstrate that the proposed approach achieves a translation performance
that is comparable—or close—to conventional word-based and phrase-based systems.

Feng et al. [12] proposed a cross-lingual feature extraction (CFE) method to learn
the cross-lingual features from monolingual corpora for low-resource UBLI, enabling
representations of words with the same meaning to be leveraged by the initialization
step. By integrating cross-lingual representations with pre-trained word embeddings in
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a fully unsupervised initialization on UBLI, the proposed method outperforms existing
state-of-the-art methods on low-resource language pairs.

Addressing the poor alignment of Chinese–Uyghur cross-language word embeddings
due to significant morphological differences, Aysa et al. [13] proposed a multilingual
morphological analyzer based on a morpheme sequence combined with neural network
cross-language word embedding vector mapping, and used for Chinese–Uyghur bilin-
gual dictionary extraction. They used robust morpheme segmentation and stemming of
bilingual text data to obtain excellent and meaningful word semantic features. Using a
small number of Chinese–Uyghur parallel seed dictionaries as weakly supervised signals,
respectively, they mapped multilingual word or morpheme vectors to a unified vector
space. Experimental results show that the morpheme sequence-based method for the
Chinese–Uyghur dictionary induction task significantly improved the accuracy of dictio-
nary alignment compared to the word-based model. Aysa et al. [14] actively explored the
resource construction and granularity optimization of minority low-resource languages
and learned cross-language word embeddings without the supervision of parallel data. A
Chinese–Uyghur bilingual dictionary extraction method is proposed based on the neural
network cross-language word embedding vector technology and the multilingual mor-
phological analyzer. Experiments showed that the morpheme sequence-based approach
significantly improved compared to the baseline model of the word sequence.

3. Materials and Methods
3.1. A Neural Network Approach

We introduce a neural network approach to extract transformation rules or patterns
from the Indonesian to Minangkabau language [15]. The first approach uses character-level
one-hot embedding, where words will be separated as characters, and each vector has the
same length size adjusted by total characters. Then, the sequence-to-sequence (seq2seq)
model, which has two RNN encoders and decoders, is utilized. Bi-LSTM as the encoder and
LSTM as the decoder were used in this research. The Bi-LSTM encoder processes the word
in the source language (Indonesian), character by character, and produces a representation
of the inputted words. The LSTM decoder takes the output of the encoder as the input and
produces a representation, character by character, in the target language (Minangkabau).
Similar to the first method, the second method employs a sequence-to-sequence model.
The distinction is in the inputted words, which are tokenized using SentencePiece with byte
pair encodings for the input to the encoder–decoder in the sequence-to-sequence model.
The tokenization involves splitting the words into chunks of characters.

The secondary data were obtained from Nasution et al. [2] and Koto and Koto [16]
with a total of 13,761 translation pairs. Pre-processing the data was completed by deleting
duplicate word pairs and constructing an array of word pairs in the form of a data-type
dictionary given by Python. In this case, various Indonesian to Minangkabau word pairings
have several meanings. A dictionary is made up of a set of key-value pairs. Each key-
value pair corresponds to a certain value Baidalina et al. [17]. The data were validated by
Minangkabau native speakers after the duplicate data were removed. As a result, there
were 10,278 translation pairs in the complete set of data. The model’s performance was
evaluated using five-fold cross-validation with precision as the evaluation metric. Precision
measures the extent to which the positive predictions from a classification model are correct.
Precision calculates the percentage of true positive (TP) predictions compared to the total
positive, i.e., true positive (TP) + false positive (FP) predictions made by the model, as
shown in Equation (1).

Precision =
TP

TP + FP
(1)
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3.2. Long Short-Term Memory (LSTM)

Long short-term memory (LSTM) is an upgraded recurrent neural network (RNN)
that is used to overcome the problem of vanishing and exploding gradients [18]. LSTM
addresses the problem of long-term RNN reliance, where RNNs are unable to predict input
data stored in long-term memory but can make more accurate predictions based on current
information. The LSTM architecture can store large amounts of data for lengthy periods
of time. They are applied to time-series data processing, forecasting, and categorization.
Memory cells and gate units are key components of the LSTM architecture. Forget gate,
input gate, and output gate are the three types of gates in an LSTM. Figure 1 illustrates the
structure of the LSTM model. The library used was tf.keras.layers.LSTM.

Figure 1. Unit structure of the LSTM.

Cell memory tracks the dependencies between components in the input sequence.
New values that enter the cell state are handled by the input gate. The LSTM unit utilizes
a forget gate to select the value that remains in the cell state. The value in the cell state
that remains will be sent to the output gate, where the LSTM activation function, also
known as the logistic sigmoid function, will be used to start the calculation. The tanh and
sigma symbols represent the types of activation functions employed in the neural network’s
training layers.

A sigmoid gate, which restricts how much information may pass through, and allows
information to flow through it unmodified, is another essential feature of LSTM. The
outputs of the sigmoid layer, which vary from zero to one, specify how much of each
component should be permitted to pass. The Equation (2) that controls the LSTM flow is
as follows:

ft = σ(w f · [ht−1, xt] + b f (2)

it = σ(wi · [ht−1, xt] + bi

Ct = tanh(wc · [ht−1, xt] + bc

Ct = ft × Ct−1 + it ? Ct

ot = σ(wo · [ht−1, xt] + bo

ht = ot × tanh Ct
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where
ot : at time t, output gate
it : at time t, input gate
ht : output at time t
ft : forget gate, at time t
xt : input at time t
σ : sigmoid function
Ct : the state of the cell at time t
wo, w f , wi, wc : weights that have been trained
bc, bi, b f : trained biases

3.3. Bidirectional Long Short-Term Memory (Bi-LSTM)

RNN’s advantage is in the reliance on coding inputs. However, LSTM’s advantage is
in resolving RNN’s long-term issues. Improvements are made with Bi-RNN because only
one direction of the previous contextual information can be used by LSTM and RNN [19].

As a result of the advantages of each technique, the LSTM form is kept in the cell
memory, and Bi-RNN can process information from the previous and following contexts,
resulting in Bi-LSTM [19]. Bi-LSTM can leverage contextual information and generate two
separate sequences from the LSTM output vector. Each time step’s output is a mixture of
the two output vectors from both directions [20]. Figure 2 depicts the combination of LSTM
and Bi-RNN. The library used was tf.keras.layers.Bidirectional.

Figure 2. Bi-LSTM architecture.

3.4. Character-Level Sequence-to-Sequence Model

Figure 3 shows the Seq2Seq model considered in this study with a two-layered Bi-
LSTM encoder and LSTM decoder. The encoder’s functions are to read the input sequence
(character by character), build context, and extract a summary of the input. The decoder
will provide an output sequence in which the previous character affects every character in
each time step as well as the next character that emerges. The marker /<eos/> denotes the
end of a sentence, and it will determine when we stop predicting the following character in
a series [21].
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Figure 3. Character-level sequence-to-sequence model.

Following the construction of the encoder–decoder network architecture in this typical
end-to-end framework, a training approach may be utilized to obtain an optimal word pair
translation model and keep the character order, referred to as a cell state or memory cell.
Since the horizontal line across the bottom of the diagram is in the source and target words,
the input (Indonesia) and output (Minangkabau) sequence must be treated in time order.
For the Indonesian language, 28 input tokens were used, and 31 output tokens were used
for the Minangkabau language.

3.5. SentencePiece Sequence-to-Sequence with Byte Pair Encoding (BPE)

The second method we present is SentencePiece (as subword tokenization). According
to Kudo [22], subword tokenization implements SentencePiece, subword-nmt, and Word-
Piece model features. Subword vocabulary is built by using the BPE segmentation method
to train a SentencePiece tokenization model, which divides words into chunks of characters
based on vocabulary size to make pattern detection easier.

BPE was added to our research methodology because Indonesian ethnic languages
now utilize an alphabet script established by the Dutch, despite having original traditional
scripts. Dutch people appeared to assign chunks of alphabets to phonemes of Indonesian
ethnic languages when teaching the alphabet to them [1]. As a result, most Indonesian
ethnic languages can use the same or similar tokens.

Furthermore, with each phonetic development, languages belonging to the same
language family descended from the same proto-language. As a result, we assume a
phonetic-based strategy is preferable to a character-based method. The number of words to
be processed into tokenization is known as the vocabulary size, which in this case, refers to
the number of most frequently occurring characters, including symbols like </unk>, and
whitespace. We employed a wide range of vocabulary sizes.

In the character-level sequence-to-sequence model shown in Figure 3, both input and
output are split, character by character. As for the SentencePiece sequence-to-sequence
model with BPE, as shown in Figure 4, both input and output are split by the BPE method,
after initially setting the vocabulary size for each language.

BPE constructs a base vocabulary comprising all symbols found in the set of unique
words, and then learns merge rules to combine two symbols from the base vocabulary to
create a new symbol. It continues to do this until the vocabulary has grown to the required
size. The BPE algorithm replaces the data byte pairs that occur most frequently with a
new byte until the data can no longer be compressed because no byte pair occurs most
frequently. The steps in the training procedure are as follows [23]:

(1) Gather a huge amount of training data.
(2) Determine the vocabulary size.
(3) Identify the end of a word, add an identifier (</w>) to the end of each word, and then

calculate the word frequency in the text.
(4) Calculate the character frequency after dividing the word into characters.
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(5) Count the frequency of consecutive byte pairs from the character tokens for a prede-
termined number of rounds and combine the most frequently occurring byte pairings.

(6) Repeat step 5 until the required number of merging operations has been performed or
the specified vocabulary size is reached.

Figure 4. SentencePiece sequence-to-sequence model with BPE.

The input text is treated as a sequence of Unicode characters by SentencePiece. Whites-
pace is also treated like any other symbol. SentencePiece expressly handles whitespace
as a fundamental token by first escaping it with the meta symbol “___” (U + 2581) [22].
Meanwhile, the ‘\n’ symbol is the end of a string. The results of the chunks of characters
from the BPE will vary when utilizing a larger vocab size.

Excluding alphabets, the vocabularies obtained from BPE 40 and 100 are summarized
in Tables 1 and 2. Overall, the vocabulary numbers in Indonesia and Minangkabau are the
same (7 and 68, respectively). As shown in Table 1, more character pieces are obtained if
larger vocabulary sizes are used. The alphabet following the “_” symbol is a portion of the
characters from the beginning of the term in the vocabulary. For example, as indicated in
bold in Table 1, the difference between the Minangkabau character pieces, sa and _ sa, is
that sa indicates that the character is not at the beginning of the word. Tokenization results
are presented in Table 2, which shows the words in Minangkabau and Indonesian turned
into pieces of characters from BPE. The tokenization with vocab size = 40 is almost the same
as character-based tokenization because vocab size = 40 is nearly the same as the number
of alphabets.

Table 1. Vocabularies obtained from BPE Indonesian–Minangkabau.

Language Vocab Size = 40 Vocab Size = 100

Indonesian an, ng, nya, ta,
kan, _di, _men,

an, ng, kan, ta, _di, la, nya, ra, da, si, _ke, _ber, ti, ba, li, ga,
ri, ja, er, tu, bu, _se, at, in, _men, ma, sa, _per, ka, en, di,

wa, ku, _meng, ya, na, _me, _pen, te, mp, ca, _p, _ter, ru,
du, _mem, de, pa, or,un, ar, ju, is, _ka, bi, _ko, _ma, re, on,

_ba, _pe, _pem, tan, pu, gu, al, ran, asi

Minangkabau an, ang, _pa, _di,
_ma, _ba, ng

an, ng, _di, _ba, ra, si, la,_pa, nyo, _ka, ta, da, ang, _ma, ik,
kan, li, ri, ti, ak, tu, ka, _sa, _man, ja, ah, _ta, bu, ga, ek, in,
ba, ku, sa, ma, su, di, ru, ya, _a, mp, _pan, to, wa, pa, ca,

ran, du, ro, lu, tan, lo, mba, angan, ju, bi, pu, re, han, en, te,
do, de, ko, gu, gi, _mam



Appl. Sci. 2023, 13, 8666 8 of 15

Table 2. Example of tokenization BPE with different vocabulary sizes, Indonesian–Minangkabau.

Vocab Size = 40 Vocab Size = 100

Indonesian Minangkabau Indonesian Minangkabau

_,y,a,ng _,n,an,‘\n’ _,ya,ng _,n,an,‘\n’
_,p,a,d,a _,pa,d,o,‘\n’ _pa,da _,pa,do,‘\n’

_a,d,a,la,h _a,d,o,l,a,h,‘\n’ _a,da,la,h _a,do,la,h,‘\n’
_,s,e,g,e,ra _,s,a,g,i,r,o,‘\n’ _,se,ge,ra _,se,ge,ra,‘\n’

_,d,a,s,a,r,nya _,d,a,s,a,n,y,o,‘\n’ _,da,sa,r,nya _,da,sa,nyo,‘\n’

3.6. Experiment Design

This study has three research goals. To reach the first goal, two models were used
to find translation word pairs; they will be examined using bidirectional long short-term
memory and long short-term memory, according to previous research [10]. Figure 5 shows
the comparison between the two models, which are character-level and SentencePiece with
BPE. We utilized the parameters selected for both models in Table 3.

(a) Character level. (b) SentencePiece with BPE
Figure 5. Experimental design for the two models.

Table 3. Model’s parameter.

Character Level and SentencePiece with BPE

Parameter Bi-LSTM LSTM

Embedding Size 512 512
Epoch 120 120

Batch Size 64 64

In this case, the implemented learning rate schedule technique was the learning rate
decay; we chose an initial learning rate, then reduced it progressively according to a
scheduler. We set the learning rate to 0.001, |and then the learning rate decreased by 1%
for every epoch above the 15th. A slower learning rate may allow the model to acquire a
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more optimal or even globally optimal set of weights, but it will take much longer to train
the model. The 10,278 translation pairs are split into 8221 training sets and 2056 test sets.

Languages evolve from each generation of language users and learners, which sug-
gests that arbitrary aspects of linguistic structure may result from general learning and
processing biases derived from thought processes, perception factors, cognitive limitations,
and pragmatics [24]. Therefore, after determining the best neural network-based bilingual
lexicon induction model, the second research goal is obtained by evaluating how well the
model detects the transformation rules between Indonesian and Minangkabau. We define a
rule-based approach as a baseline by involving Minangkabau language experts to provide
the transformation patterns of the Minangkabau language to the Indonesian language.
Lastly, to reach the third research goal, we apply the model to Malay, Palembang, Javanese,
and Sundanese languages.

4. Results
4.1. Neural Network Performance

This study uses two scenarios to find the optimal seq2seq model with the best per-
formance. When comparing the character-level and SentencePiece approaches with the
seq2seq model, the character-level seq2seq method generates a more accurate translation
of word pairs.

As shown in Tables 4 and 5, the results demonstrate that character-level tokenization,
as opposed to BPE tokenization, is more suitable for translating word-to-word. The vo-
cabulary size has minimum and maximum values. The minimum value necessary for this
experiment’s data is 33. The experiment was run seven times with different vocabulary
sizes; the maximum vocabulary size used was 300. When utilizing a minimal vocabu-
lary size in BPE, it indicates that the number of tokens is approximately the same as the
character-level-based method. However, as shown in Table 5, the tokenization outcomes
from the source and target pairs will vary more as the vocabulary size increases, which has
an impact on the BPE performance outcomes. This shows that because the vector length is
shortened, the data are likely to be less informative, making it more difficult for the model
to recognize. In general, the larger the vocabulary size, the higher the results due to the
data being word-to-word pair translations instead of sentence-to-sentence.

Table 4. Evaluation of the character-level model.

Method
K-Fold Cross-Validation Indonesian–Minangkabau

K = 1 K = 2 K = 3 K = 4 K = 5 Average Precision

Bi-LSTM (encoder), 84.72 83.70 83.31 83.60 84.30 83.92LSTM (decoder)
LSTM 76.79 74.56 77.82 78.21 75.87 76.65(encoder–decoder)

Table 5. Evaluation of SentencePiece with the BPE model.

Vocab Size
K-Fold Cross-Validation Indonesian–Minangkabau

K = 1 K = 2 K = 3 K = 4 K = 5 Average Precision

33 79.96 76.55 78.84 81.71 80.78 79.56
35 76.11 76.89 79.42 74.31 80.73 77.49
40 72.12 72.88 75.23 75.99 71.64 73.59
50 67.12 62.15 66.97 67.41 64.29 65.58
80 58.73 59.32 53.35 54.12 56.47 56.39

100 49.36 48.24 49.46 49.70 48.78 49.10
300 34.85 34.93 30.31 35.76 36.19 34.40
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Figure 6 illustrates that the character-level method has a shorter vector length (29)
compared to the SentencePiece with the BPE method (300) when representing the same
word, i.e., “adolah”. As shown in Table 5, the larger the vocabulary size, the lower the
translational accuracy results. For an example of the Minangkabau word adolah, if the
vocabulary size = 300, the number of tokens decreases, while the lengths of the vectors
representing the tokens become longer because the vectors need more expression power.

Figure 6. Comparison between SentencePiece with BPE and the character-level method.

4.2. Pattern Recall

To evaluate the neural network-based approach (character-level Bi-LSTM), we define
a rule-based approach as the baseline. Minangkabau language experts provided the
transformation patterns of the Indonesian language to the Minangkabau language. The
steps to generate translation using the rule-based approach are as follows:

(1) Remove the translation pairs, where the source word and the target word are identical
from the 2056 translation pair candidates, making 1262 translation pairs.

(2) Following the transformation pattern from the expert, define the transformation rules
by regular expressions.

(3) Use the transformation rules that have been determined with all source words and
replace rule matches with a string.

There are 34 transformation patterns for the Indonesian to Minangkabau language,
as shown in Table 6. However, there are exceptions for pattern numbers 21–27, where
the patterns can be grouped by changing all first characters “e” to “a” and all first char-
acters “er” to “a”. The group can be created using regular expressions (‘([aiueo]*) e’) and
(’([aiueo]*)er’).

The rule-based approach can generate 475 of the 1262 translation pairings, whereas
the remaining 787 translation pairs cannot be produced since they have no pattern or have
double or multiple patterns. Figure 7 describes the rule-based results. There are several
factors affecting the poor performance of the rule-based approach. The rule-based approach
is unable to identify two or more patterns in a single word, as shown in Table 7. Only a
single pattern can be generated via a rule-based approach. The rule-based approach can be
enhanced by identifying multiple rules on a single word, which can potentially increase
recall. However, the more rules applied to a single word, the higher the risk of low precision.
This thread-off could be explored in future work. Moreover, the current rules listed in
Table 6 can be enriched by Minangkabau native speakers to improve their performance.
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Table 6. List of patterns in Indonesian and Minangkabau.

Pattern Indonesian Minangkabau

1 Ending uk to uak Rusuk Rusuak
2 Ending a to o Sama Samo
3 Ending ik to iak Batik Batiak
4 Ending ing to iang Baling Baliang
5 Remove last character Tukar Tuka
6 Ending as to eh Panas Paneh
7 Ending uh to uah Penuh Penuah
8 Ending ut to uik Laut Lauik
9 Ending ung to uang Patung Patuang
10 Ending ap to ok Atap Atok
11 Ending it to ik Kulit Kulik
12 Ending is to ih Lapis Lapih
13 Ending up to uik Hidup Hiduik
14 Ending ul to ua Pukul Pukua
15 Ending kan to an Arahkan arahan
16 Ending a to ok Jika Jikok
17 Ending ur to ua Kabur Kabua
18 Ending t to ik Giat Giaik
19 Beginning meng to ma Mengadu Maadu
20 Beginning meng to mang Mengaku Mangaku
21 Beginning Ber to Ba Berlari Balari
22 Beginning Per to Pa Perjalanan Pajalanan
23 Beginning Pe to Pa Penyabar Panyaba
24 Beginning Se to Sa Seirama Sairama
25 Beginning Re to Ra Retak Ratak
26 Beginning Te to Ta Tepian Tapian
27 Beginning Ter to Ta Termakan Tamakan
28 Ending ir to ia Kincir Kincia
29 Ending at to ek Keringat Keringek
30 Ending d to ik Jasad Jasaik
31 Ending id to ik Murid Murik
32 Ending ih to iah Gigih Gigiah
33 Ending us to uih Arus Aruih
34 Ending il to ia Hasil Hasia

Table 7. Example words with double or multiple patterns.

Pattern Indonesian Minangkabau

1 Me to ma, kan to an Meresmikan Maresmian
2 Pe to Pa, ih to iah Pemilih Pamiliah

3 Ke to Ka, Ing to Iang, Kan to
An Keringkan Kariangan

Figure 7. Rule-based result.
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We compare the results with the best neural network model, which is the character-
level model with Bi-LSTM as the encoder and LSTM as the decoder. We conduct the
comparison by examining some of the potential outcomes from the test data as shown
in Table 8. As shown in Table 8, there are 414 correct translations obtained by both the
neural network approach and rule-based approach, which means that the neural network
approach successfully identifies the transformation patterns of the Indonesian language to
the Minangkabau language. Moreover, the neural network approach successfully obtains
603 correct translation pairs, which have no pattern or have multiple patterns that cannot
be handled by the rule-based approach. Furthermore, only 61 translation pairs are not
recognized by the neural network approach.

Table 8. Comparisons between the neural network approach and rule-based approach.

Method Result Neural
Correct Wrong

Rule Correct 414 61
Wrong 603 184

4.3. Neural Network Performances for Other Ethnic Languages

The best neural network model, which is the character-level model with Bi-LSTM
as the encoder and LSTM as the decoder, was utilized in additional experiments to cre-
ate Indonesian–Malay, Indonesian–Palembang, Indonesian–Javanese, and Indonesian–
Sundanese bilingual dictionaries. Unfortunately, we only have small secondary data
obtained from Nasution et al. [2], as shown in Table 9. The source code and the bilingual
dictionaries are available online (https://github.com/arbihazanst/neural-network-lexicon-
induction, accessed date: 24 July 2023).

Table 9. Dataset for all ethnic languages.

Language Pair #Translation Pair #Training Set #Test Set

Indonesian–Minangkabau 13,761 11,008 2753
Indonesian–Malay 5229 4183 1046

Indonesian–Palembang 5098 4078 1020
Indonesian–Javanese 4778 3822 956

Indonesian–Sundanese 5045 4036 1009

The Indonesian–Malay dictionary has 5229 translation pairs, divided into 80% in the
training set (4183), and 20% in the test set (1046); the number of tokens in Indonesia is
27 characters, and in Malay is 30 characters. Table 10 shows the performance results of the
character-level model for the Indonesian–Malay experiment. The Indonesian–Palembang
dictionary has 5098 translation pairs, divided into 80% in the training set (4078), and
20% in the test set (1020); the number of tokens in Indonesia is 28 characters, and in
Palembang is 29 characters. Table 11 shows the performance results of the character-level
model of the Indonesian–Palembang experiment. The Indonesian–Javanese dictionary has
4778 translation pairs, divided into 80% in the training set (3822) and 20% in the test set
(956); the number of tokens in Indonesia is 27 characters, and in Javanese is 32 characters.
Table 12 shows the performance results of the character-level model of the Indonesian–
Javanese experiment. Finally, the Indonesian–Sundanese dictionary has 5045 translation
pairs, divided into 80% in the training set (4036) and 20% in the test set (1009); the number of
tokens in Indonesia is 26 characters, and in Sundanese is 33 characters. Table 13 shows the
performance results of the character-level model for the Indonesian–Sundanese experiment.

https://github.com/arbihazanst/neural-network-lexicon-induction
https://github.com/arbihazanst/neural-network-lexicon-induction
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Table 10. Evaluation of the character-level model in Indonesian–Malay.

Method
K-Fold Cross-Validation Indonesian–Malay

K = 1 K = 2 K = 3 K = 4 K = 5 Average Precision

Bi-LSTM (encoder), 64.72 66.15 65.20 65.96 63.38 65.08LSTM (decoder)

Table 11. Evaluation of the character-level model in Indonesian–Palembang.

Method
K-Fold Cross-Validation Indonesian–Palembang

K = 1 K = 2 K = 3 K = 4 K = 5 Average Precision

Bi-LSTM (encoder), 63.82 62.45 63.23 60.29 62.84 62.52LSTM (decoder)

Table 12. Evaluation of the character-level model in Indonesian–Javanese.

Method
K-Fold Cross-Validation Indonesian–Javanese

K = 1 K = 2 K = 3 K = 4 K = 5 Average Precision

Bi-LSTM (encoder), 62.02 59.30 59.62 55.34 61.08 59.69LSTM (decoder)

Table 13. Evaluation of the character-level model in Indonesian–Sundanese.

Method
K-Fold Cross-Validation Indonesian–Sundanese

K = 1 K = 2 K = 3 K = 4 K = 5 Average Precision

Bi-LSTM (encoder), 57.77 58.47 59.36 59.26 57.48 58.46LSTM (decoder)

Based on the results, we can see the average precision numbers for Indonesian–Malay
and Indonesian–Palembang (65.08 and 62.52, respectively) are higher than the average
precision numbers for Indonesian–Javanese and Indonesian–Sundanese (59.69 and 58.46,
respectively). This shows that the neural network approach can identify transformation
patterns of the Indonesian language to closely related languages (such as Malay and
Palembang) better than distantly related languages (such as Javanese and Sundanese).

5. Conclusions

In order to obtain word-to-word translation pairs, the experiment shows that the
neural network approach utilizing a sequence-to-sequence model is more able to extract
Indonesian–Minangkabau language transformation patterns with a distinct number of
tokens based on a character basis. The character-level seq2seq method (Bi-LSTM as an
encoder and LSTM as a decoder) with an average precision of 83.92% outperforms the
SentencePiece byte pair encoding (with a vocab size of 33), with an average precision of
79.56%. Furthermore, to evaluate the performance of the neural network model in finding
the pattern, a rule-based approach was conducted as the baseline. The neural network
approach obtained 542 more correct translations compared to the baseline. We implemented
the best settings (character-level embedding with the Bi-LSTM as the encoder and LSTM as
the decoder) for four other Indonesian ethnic languages (Malay, Palembang, Javanese, and
Sundanese), with average precisions of 65.08%, 62.52%, 59.69%, and 58.46%, respectively.
This shows that the neural network approach can identify transformation patterns of the
Indonesian language to closely related languages (such as Malay and Palembang) better
than distantly related languages (such as Javanese and Sundanese). The generated neural
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network–bilingual lexicon induction model can be improved by increasing the size of the
bilingual dictionaries so that the model can learn more translation patterns in Minangkabau,
Malay, Palembang, Javanese, Sundanese, and other Indonesian ethnic languages.
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