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ABSTRACT Discrepancies in custody transfer systems ingoi] and gas industry pose significant financial,
regulatory, and operational risks. Accurgg prediction of these discrepancies is critical to optimizing oper-
ations and minimizing potential losses. This study evaluates the effectiveness of Large Language Models

s), specifically the Chronos-FineTuning Amazon Chronos TS Small model, alongside statistical,
machine learning, and deep learning models, in both probabilistic and point forecastinggsks. The evaluation
covers metrics such as Weighted Quantile Loss (WQL), Scaled Quantile Loss (SQL), Mean Absolute Error
(MAE), Symmetric Mean Absolute Percentage Error (SMAPE), and Root Mean Square Error (RMSE).
The results highlight the superior performance of the Chronos model in both forecasting paradigms,
demonstrating its ability to capture uncertainty and deliver precise predictions. This research offers valuable
insights into selecting forecasting methodologies to improve custody transfer operations, underscoring the
transformative potential of LLMs in industrial applications.

INDEX TERMS probabilistic time-series forecasting; large language models; discrepancy; custody transfer
system

L. INTRODUCTION models are meant to detect, just as natural language does. The
precise calibration of these models on numerical time-series
datasets enables the identification of trends, seasonality, and
anomalies, which in turn supports accurate predictions of
future values. This capability has wide-ranging applications
in fields such as finance, energy, urban planning, and traffic
management. For instance, by training on massive datasets
containing financial data and coverage, large language
models in finance can identify trends and patterns in mutual
fund data, provide insights into mutual fund performance, and
create individualized re; mendations for mutual funds for

Large Language Models, commonly referred to as LLMs,
represent sophisticated artificial imellige systems that
have undergone training on vast datasets, enabling them to
understand and generate text that closely resembles human-
produced language. Built on advanced neural architectures,
particularly transformers, LLMs excel at detecting patterns,
relationships, and contextual nuances in sequential data [1].
Their flexibility in handling long-term dependencies and abil-
ity to adapt to different tasks, such as creative writing and
summarizing text, makes them useful for many applications

[21=I5]. individual investors [6]. In the field of energy, large language
models have the ability to combine numerical meteorological

n the context of time-series forecasting, the ability of data with textual weather descriptions, thereby enhancing
LLMs to process sequential and contextual information  the degree of precision of forecasts related to photovoltaic
makes them particularly effective. Time-series data relies power generation. A GPT agent, for example, can interpret

on temporal patterns and dependencies that large language
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linguistic weather descriptions and convert them into nu-
meric vectors, which are then used in conjunction with tra-
ditional meteorological data to improve prediction accuracy
[7]. Urban planners and traffic managers can benefit from
large language models’ traffic flow forecasting capabilities,
which aid eholders in making decisions s a variety
of traffic scenarios [8]. The LLMs" capacity to efficiently

manage time-series data is a source of various opportunities
for informed decision-making and predictive analytics in a

d e array of industries.

e oil and gas industry, custody transfer is a critical pro-
cess essential for maintaining accuracy in trade transactions
[9]. It involves the precise measurement of hydrocarbons dur-
ing loading activities. The precise measurement and efficient
transfer of hydrocarbon ownership require custody transfer
systems (CTS). Discrepancies in these systems, which can
arise from a variety of sources, can have a negative impact
on financial [10], regulatory [11]. and operational outcomes
[11]. As a result of these discrepancies, corporations that
participate in trade transactions usually suffer significant fi-
nancial losses.

Discrepancies in custody transfer systems 1n the oil and
gas industry are nearly impossible to eradicate due to the
inherent complexities of measurement processes, environ-
mental variability, and equipment limitations. Therefore, in
order to reduce possible financial risks, it is crucial to forecast
discrepancies in custody transfer systems. The application of
advanced technologies and data analytics enables industries
to forecast and mitigate discrepancies in a proactive manner,
thereby averting potential costs associated with these issues.

A variety of factors can contribute to discrepancies in cus-
tody transfer systems. Errors in flow metering [10], sampling
[10], and meter proving [12] can lead to inaccurate readings.
Challenges in achieving a homogeneous mixture of crude
oil and water for accurate sampling [10], [11]. Other factors
that can affect flow meters include temperature, pressure,
and viscosity [13]. [14]. Inadequate operations and main-
tenance practices can also be a problem [15]. The use of
outdated or inappropriate metering equipment and practices
can also lead to inaccurate readings [16]. Finally, there are
differences in measurement methodologies, such as error-
based and uncertainty-based [17], which can affect the results.
These multifaceted challenges highlight the importance of
predictive measures that not only detect potential discrepan-
cies inreal time but also provide actionable insights to resolve
them. Companies can increase the accuracy and dependability
of custody transfer operations by systematically addre:

This study will focus on evaluating the effectiveness of
LLMs in predicting production discrepancies by comparing
probability-based (uncertainty-based) and point-based (error-
based) measurement methodologies. This study intends to
offer important insights for improving overall production pro-
cess efficiency and custody transfer operations by examining
the predictive capabilities of LLMs. Through this research,

2

companies will be able to make informed decisions on which
measurement methodologies to implement in order to op-
timize their custody transfer operations. Understanding the
predictive capabilities of LLMs allows companies to reduce
errors and uncertainties in production discrepa resulting
in greater acy and cost savings. Overall, the findings of
this study have the potential to revolutionize how businesses
approach custody transfer operations and improve efficiency
in their production processes.

1. RELATED WORK

A. LARGE LANGUAGE MODELS IN TIME-SERIES
FORECASTING

In the time-series forecasting domain, large language models
(LLMs) have demonstrated tremendous promise by utilizing
their capabilities in semantic reasoning and sequence model-
ing to address a variety of challenges associated with time-
series forecasting. Gruver et al. [18] explore how LLM,
GPT-3 and Llama-2 can do time-series forecasting using zero-
shot and few-shot learning. They have shown that their LLMs
can handle various time-series tasks without changing the
underlying model by rephrasing forecasting as text gener-
ation. Large language models can also integrate numerical
time-series data with textual information, thereby improving
forecasting accuracy by utilizing additional context [19].

According to Zhang et al. [20], there are five different ways
to use LLMs in time series analysis: (1) prompting (input),
(2) quantization (tokenization), (3) aligning (embedding), (4)
vision as a bridge (LLM stage), and (5) tool integration (out-
put stage). In order to use zero-shot functionality, prompting
sees lime series as unprocessed text. For quantization to work,
numerical data needs to be turned into discrete tokengyfhis
can be done with methods like K-means clustering or vector
quautiz,ecm.riatiunal autoencoder (VQ-VAE). Aligning ei-
ther uses contrastive learning to align time series embeddings
with text embeddings or incorporates time series into large
language model architectures. Vision as a bridge employs vi-
sual representations, such as plots, to synchronize time series
with textual data via vision-language models. Tool integration
utilizes LLMs indirectly to produce tools (e.g., APIs or code)
for designated tasks.

Although LLMs have been progressively utilized in time
series forecasting across various fields [21]-[23], including
finance, healthcare, and spatio-temporal analysis (@=., traffic
and human mobility) [3], their implementation in the oil
and gas industry is still restricted, highlighting considerable
unexploited potential. Theoretical frameworks indicate that
the adaptability of LLMs renders them particularly effective
for intricate predictive tasks within this industry. He Liu etal.
[24jgavestigate the evolution and utilization of sophisticated

models in the oil and gas sector, encompassing LLMs,
1sual Large Models (VLMs), and Multimodal Large Models
(MLMs). These models have proven effective in improving
efficiency, decision-making, and predictive capabilities in ar-
eas such as exploration, drilling, agggeservoir management.
Nonetheless, present applications 1 the oil and gas sector
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are predominantly confined to functions such as intelligent
i ance, data and seismic image segmentation, and
pipeline fault detection. Prominent instances comprise Ge-
oGPT for geological inquiries, PetroQA for technical doc-
ument queries, and RockSAM for precise segmentation of
geological images. The restricted range of applications un-
derscores the potential to broaden LLM functionalities to
time series forecasting, fulfilling essential requirements like
production trend prediction, reservoir performance evalua-
tion, and maintenance scheduling, where their capacity to
analyze and model sequential data [23] could yield significant
advantages.

B. PROBABILISTIC FORECASTING METHODS

Probabilistic time-series forecasting seeks to generate a pre-
dictive distribution of the variable of interest rather than a sin-
gular point estimate, whereas traditional deterministic fore-
casting yields a single-value prediction of future outcomes
[25]-[27]. Traditional deterministic forecasting methods gen-
erally fail to offer the confidence intervals necessary to man-
age uncertainty, whereas probabilistic forecasting models do
[28]-[30]. Traditional deterministic forecasting models rely
directly on historical data, whereas probabilistic forecasting
models employ Bayesian inference and ensemble methods to
produce probabilistic forecasts that incorporate uncertainty in
the predictions [31], [32].

Probabilistic forecasts offer a superior depiction of fore-
cast uncertainties, enhance human proficiency in decision-
making, and facilitate effective communication of fore-
cast uncertainties to end-users [31], [33]. Probabilistic fore-
casts assist decision-makers in evaluating risks and making
more inforgfed decisions. Probabilistic forecasting effectively
quantifies prediction uncertainty in power systems utilizing
renegble energy sources [29], [34], offering comprehen-
sive forecasting information and essential data support for
analysis and decision-making. Furthermore, cases within the
oil and gas industry demonstrate that probabilistic forecast-
ing can improve the relggmlity of decision-making regarding
production predictions for unconventional oil and gas wells
[35]. Afifi et al. [35] discovered that employing prediction
intervals enhances reliability in comparison to single-value
he researchers discovered that employing Pre-
diction Interval Coverage Probability (PICP) and Prediction
Interval Normalized Average Width (PINAW) establishes a
distinct trade-off between interval coverage and precision,
facilitating informed decision-making. Maldonado-Cruz and
Pyrcz’s [36] research delineates the creation and utilization
of Temporal Fusion Transformers (TFTs) for forecasting
subsurface resources, specifically regarding multi-well fluid
flow performance. They can assess uncertainty by employing
a quantile loss function to forecast outcome ranges with
confidence intervals (e.g., P10 to P90). The TFTs enhance
well productivity and resource recovery while considering
uncertainties in forecasts.

a

Ill. MATERIALS AND METHODS
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A. DATASET

The point of this study is to look into how large language mod-
els (LLMs) can be used in probabilistic time-series forecast-
ing. More specifically, they will be used to estimate discrep-
ancy values in oil production gathering stations. The dataset
utilized in this study was obtained from nine production
gathering stations located in the West Area of Riau Province,
sia. These stations are Kotabatak, Petapahan, Suram,
n, Terantam, Osam, Langgak, Lindai, and Mahato. For
two types of data were collected: the discrepancy
gross fraction (DGF) and the discrepancy unallocated net
tion (DUNF). DGF and DUNF differ in their inclusion
of a metering factor parameter at DUNE The discrepancy
was determined by comparing the total amount of crude
oil delivered by eight gathering stations (Petapahan, Suram,
Kasikan, Terantam, Osam, Langgak, Lindai, and Mahato) to
the amount of oil recorded at the main station (Kotabatak).
Data collection occurred over a span of 650 days, specifically
om March 6, 2021, to December 14, 2022, with manual data
acquisition conducted daily.

B. METHODS
In this study, we cv;\?e a diverse set of forecasting mod-
els categorized into Statistical Models, Machine Learning
Models, Deep Learning Models, and Large Language Models
(LLMs). We use the Autogluon [37] Python library for all of
our model evaluations. This categorization allows for a com-
prehensive comparison of traditional and modern approaches
to time series forecasting. Each category represents a distinct
methodology with strengths tailored to specific data patterns
and forecasting tasks. 7

Forecasting is a challenging task, and no single model
consistently outperforms others across all datasets or time
series patterns due to variations in trend, seasonality, noise,
and dependencies. Using models from multiple categories
ensures the evaluation of a wide spectrum of capabilities:

« Statistical Models offer simplicity, interpretability, and
robustness, especially for stationary or seasonal data.

« Machine Learning Models provide flexibility to learn
patterns from engineered or automatically extracted fea-

performing well with non-linear relationships.

. p Learning Models excel in capturing complex
temporal dependencies and large-scale data patterns.

« Large Language Models (LLMs) leverage their
eralization ability and pre-trained knowledge to forecast
without extensive domain-specific tuning.

This multi-model approach provides a nuanced understanding
of model performance across diverse forecasting scenarios.

en-

1) Statistical Models
Statistical models are traditional approaches that rely on
predefined mathematical structures to represent and forecast
time series. These models are particularly effective for captur-
ing simple relationships, seasonality, and trends in the data.
o AutoETS: AutoETS [38], [39] automatically selects the
best-fitting Exponential Smoothing State Space Model
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(ETS) configuration. It is well-suited for handling sea-
sonal and trend components in time series.
DynamicOptimizedTheta: The Theta model [40] de-
composes a time series into trend and seasonality com-
ponents. Its optimized version dynamically adjusts de-
composition parameters for better adaptability across
different datasets.

SeasonalNaive: SeasonalNaive is a baseline model that
assumes future values repeat the observed values from
the previous seasonal period. It serves as a reference for
evaluating model performance.

« NPTS: Non-Parametric Time Series (NPTS) is a kernel-
based approach that avoids strong parametric assump-
tions, making it useful for forecasting time series with
irregular patterns.

Each statistical model is tailored for specific data struc-
tures, such as seasonality (SeasonalNaive), trend decomposi-
tion (DynamicOptimizedTheta), or parameter flexibility (Au-
toETS, NPTS). Including all ensures comprehensive evalua-
tion. Table 1 shows the parameters for each statistical model.

Model
AutoETS

Parameters

model ="ZZZ’
seasonal_period = None

.

» damped = False

e n_jobs =10.5

« max_ts_length = 2500
DynamicOptimizedTheta

» decomposition_type = “multiplica-

tive'

» seasonal_period = None

» n_jobs=0.5

« max_ts_length = 2500
SeasonalNaive

o seasonal_period = None

o n_jobs = 0.5
NPTS

» kemel_type = "exponential’

» exp_kernel_weights = 1.0

= use_seasonal_model = True

» num_samples = 100

o num_defauli_time_features = 1

e n_jobs =105

« max_ts_length = 2500

TABLE 1. Statistical Model Parameters

2) Machine Learning Models
Machine learning models use data-driven methods to learn
patterns from time series, enabling them to adapt to non-linear
relationships and a variety of features. These models do not
rely on predefined structures and instead optimize feature rep-
resentations to improve forecasting accuracy. Table 2 shows
the parameters for each al model.
« TiDE: TiDE [41] isqllulli-layer Perceptron (MLP)-
based encoder-decoder model that uses dense layers to

encode input features and predict future values effi-
ciently.

RecursiveTabular: RecursiveTabular iteratively fore-
casts time steps using tabular regression techniques,
building on its previous predictions.

DirectTabular: DirectTabular avoids error propagation
by forecasting all future time steps simultaneously using
tabular machine learning methods.

By evaluating models like RecursiveTabular and Direct-
Tabular, we assess differences in forecasting strategies (recur-
sive vs. direct). TiDE adds a neural network-based machine
learning approach for comparison, highlighting flexibility in
capturing non-linearities. Table 2 shows the parameters for
each machine learning model.

Model
TiDE

Parameters

« context_length = max(64, 2 * pre-
n_length)

isable_known_covariates = False
feat_proj_hidden_d:
encoder_hidden_
decoder_hidden_dim = 64
dropout =02

learning rate (Ir) = le-4
early stopping patience = 20/

RecursiveTabular

lags = None

date_features = None
target_scaler = "standard”
max_num_samples = 1,000,000

DirectTabular

lags = None

date_features = None
target_scaler = “mean_abs’
max_num_samples = 1,000,000

TABLE 1. Machine Learning Model Parameters

3) Deep Learning Mo

Deep learning models capture complex temporal dependen-
cies and patterns in time series data by leveraging hierarchi-
cal representations. They are particularly advantageous when
dealing with large-scale, high-dimensional datasets. Table 3
shows the parameters for each statistical model.

« TemporalFusionTransformer: TemporalFusionTrans-
former (TFT) [42] integrates attention mechanisms to
capture long- and short-term dependencies while effec-
tively combining static and dynamic features.
PatchTST: PatchTST [43] segments input time series
data into patches and applies a transformer architecture,
allowing the model to capture global and local patterns.
DeepAR: DeepAR [44] is an autoregressive neural net-
work designed for probabilistic forecasting. It outputs
probability distributions instead of point predictions, ex-
celling in scenarios with sparse or uncertain data.

VOLUME 11, 2023
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Each deep learning model offers unique capabilities: TFT
combines static and temporal features, PatchTST emphasizes
global temporal patterns, and DeepAR focuses on probabilis-
tic forecasts. Evaluating all three helps identify strengths in
different forecasting contexts. Table 3 shows the parameters
for each deep learning model.

Meodel Parameters

TemporalFusionTransformer

context_length = max(64, 2 * pre-
diction_length)

hidden_dim =32

num_heads = 4

dropout_rate = 0.1

max_epochs = 100

batch_size = 64

learning rate (Ir) = le-3

PatchTST

+ context_length = 96

o d_model=32

s nhead =4

+ num_encoder_layers =2

s dropout_rate = 0.1

« max_epochs = 100

» batch_size =64

» learning rate (Ir) = le-3
DeepAR

context_length = max(10, 2 * pre-
diction_length)

hidden_size =40

dropout_rate = (.1

ﬁg&pﬂchq =100
size = 64

learning rate (Ir) = le-3

TABLE 3. Deep Learning Model Parameters

4) Targe Language Models (LLMs)

Large Language Models (LLMs) apply transfer learning
to forecasting tasks, leveraging their pre-trained knowledge
to generalize across datasets without extensive fine-tuning.
Chronos ZeroShot Bolt Mini [45] uses a zero-shot approach,
forecasting directly from input data without prior domain-
specific training. This demonstrates the generality and adapt-
ability of LLMs in time series applications. The inclusion
of LLMs highlights their potential in forecasting tasks, es-
pecially when domain-specific training is limited or when
generalization across diverse time series is needed. Table 4
shows the parameters for the Chronos model.

IV. RESULTS AND DISCUSSION

The evaluation of the models was conducted using both
probabilistic and point forecasting metrics. Table 5 summa-
rizes the performance of the models across five key met-
rics: Weighted Quantile Loss (WQL) and led Quantile
Loss (SQL) for probabilistic forecasting, and Mean Absolute
Error (MAE), Symmetric Mean Absolute Percentage Error
(SMAPE), and Root Mean Square Error (RMSE) for point

VOLUME 11, 2023

Model Parameters

Chronos-Bolt-Mini (ZeroShot)

batch_size = 16

num_samples = 20
torch_dtype = "auto’
data_loader_num_workers = (0
fine_tune = False

TABLE 4. Large Language Model Parameters

ge ing. The models are grouped into four categories:
atistical Models, Machine Learning Models, Deep Learn-
ing Models, and Large Language Models (LLMs), providing
insights into their comparative performance.

q] PROBABILISTIC FORECASTING

c performance of the models in probabilistic forecasting
was evaluated using Weighted Quantile Loss (WQL) and
Scaled Quantile Loss (SQL). These metrics provide insights
into the models’ ability to capture uncertainty in forecasts,
which is crucial for risk-sensitive applications.

1) Qverview of Results
The results highlight the superior performance of the Chronos
ZeroShot Bolt Mini model, particularly in capturing uncer-
tainty and delivering precise predictions. As shown in Figures
1 and 2, this model achieves the lowest Weighted Quantile
Loss (WQL) of 0.0322 and Scaled Quantile Loss (SQL) of
0.2604, outperforming both deep learning and machine learn-
ing models. This highlights the capability of large la ge
models in probabilistic forecasting tasks, potentially due to
their ability to encode complex patterns and relationships in
time series data. These results reinforce the model’s capabil-
ity in balancing precision and robustness, making it a highly
effective choice for uncertainty-aware forecasting.

Examining the competition performance of other model
categories is crucial, even though the Chronos ZeroShot Bolt
Mini leads in both SQL and WQL measures. Temporal-
FusionTransformer outperforms other deep learning mod-
els, with a SQL of 0.2706 and a WQL of 0.0335. This is
likely attributed to its inherent architecture, which combines
LSTM-based encoders with self-attention mechanisms, al-
lowing it to model temporal dependencies effectively. Sim-
ilarly, PatchTST and DeepAR exhibit competitive perfor-
mance, with SQL values of 0.3019 and (0.3052, respectively,
and WQL values of 0.0374 and (.0378. These findings show
that deep learning models manage to be both adaptable and
ac| te predictors.

the other hand, machine learning models such as Di-

rectTabular (SQL: 0.2895, WQL: 0.0358) and TiDE (SQL:
0.3015, WQL: 0.0373) perform similarly to deep learning
models. This indicates that structured tabular data approaches
have the potential to be viable alternatives to deep learning
models, particularly in situations where computational effi-
ciency is a primary concern.
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TABLE 5. Model Evaluation

Model Probabilistic Forecasting Point Forecasting
WQL SQL MAE  SMAPE RMSE
Chronos ZeroShot Bolt Mini— 0.032227 0.260369 0018393 0.038734  0.028936
TemporalFusionTransformer  0.033498 0.270632  0.020489  0.042312  0.028303
DirectTabular 0.035831 0.289482  0.019372  0.040335  0.028388
NPTS 0.037211 0.300631 0021071 0.043522  0.02929
TiDE 0.037315 0301476 0019797 0.041296  0.028844
DeepAR 0.037366 0.301884 0022098  0.045759  0.030580
PatchTST 0.037778 0.305214 0020642 0.043407  0.030588
AutoETS 0.042597 0.344142 0023199 0.047175  0.029623
DynamicOptimizedTheta 0.047442 0383285 0.022266  0.045447  0.028882
SeasonalNaive 0.090701 0.732779  0.045147  0.090000  0.055393
RecursiveTabular 0.116078 0.937801  0.041380  0.082891  0.051309
Chronos ZeroShot Bolt Mini 0.0322 Category
Machine Leaming Madels
. Statistical Models
TemporalFusionTransformer 0.0335 Deep Learning Models
Large Language Model (LLM)
DirectTabular 00358
NPTS 0.0372
TIDE 0.0373
o
e DeepAR 0.0374
=
PatchTsT 0.0378
AutoETS 0.0426
DynamicOptimizedTheta 0.0474
SeasonalNaive 0.0907
RecursiveTabular 0.1161
0.00 0.‘02 6.64 0 66 U.IUE 0.‘10 0.12

Weighted Quantile Loss (WQL)

FIGURE 1. Model Performance on WQL.

Statistical models, on the other hand, have observable
performance restrictions even though they are interpretable.
AutoETS (SQL: 0.3441, WQL: 0.0426) and DynamicOpti-
mizedTheta (SQL: 0.38 ‘QL: 0.0474) exhibit inferior
performance compared to deep learning and machine learning
models. These models rely on predefined assumptions about
seasonality and trends, which might limit their adaptability to
complex patterns in probabilistic forecasting. SeasonalNaive
(SQL: 0.7328, WQL: 0.0907) and RecursiveTabular (SQL:
0.9378, WQL: 0.1161) exhibit the highest errors, which are
indicative of their difficulty in capturing intricate temporal
structures. Particularly for RecursiveTabular, it predicts one
step at a time and then uses those predictions as input for sub-
sequent steps. Discovering inaccuracies in early projections
often leads to an accumulative inaccuracy. Recursive Tabular
is only suited for short-term forecasts, which are subsequently
iteratively expanded into long-term projections, resulting in
less-than-ideal performance.

2) Insights from Probabilistic Forecasting
o LLMs as a Disruptive Approach: The supa')r perfor-
mance of the Chronos ZeroShot Bolt Mini underscores
the transformative potential of LLMs in time series fore-
casting. Unlike other models, LLMs are pretrained on di-
verse data, enabling them to generalize well even in zero-
shot scenarios. Their ability to process large amounts

of information and learn non-linear relationships con-
tributes to their success in probabilistic forecasting tasks.
The Role of Deep Learning Architectures: Deep learning
models like TemporalFusionTransformer and PatchTST
leverage advanced architectures, such as attention mech-
anisms, to capture long-term dependencies and interac-
tions. These features allow them to offer a robust alter-
native to LLMs, especially in scenarios where training
data is domain-specific and sufficient in quantity.

Limitations of Traditional Approaches: While statistical
models like AutoETS are computationally efficient and
interpretable, their reliance on rigid assumptions about

VOLUME 11, 2023
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Chronos ZeroShot Bolt Mini 0.2604 Category
Machine Leaming Models
. Statistical Models
TemporalFusionTransformer 0.2706 Deep Learning Models
Large Language Model (LLM)
DirectTabular 0.2895
NPTS 0.3006
TIDE 0.3015
]
B DeepAR 0.3019
=
PatchTST 0.3052
AutoETS 0.3441
DynamicOptimizedTheta 0.3833
SeasonalNaive 0.7328
RecursiveTabular 0.9378
0.0 0.2 0.4 0.6 0.8

Scaled Quantile Loss (SQL)

FIGURE 2. Model Performance on SQL.

the data limits their effectiveness in complex proba-
bilistic scenarios. Similarly, the SeasonalNaive model’s
simplistic approach is inadequate for capturing the vari-
ability in modern time series data.

Performance Gaps in Machine Learning Models: Al-
though machine learning models like TiDE and Di-
rectTabular show competitive performance, their results
indicate a potential gap in handling uncertainty com-
pared to LLMs and deep learning models. This may
suggest that future enhancements in feature engineering
and model architecture could narrow the performance
disparity.

3) Implications for Applications

Probabilistic forecasting is essential in fields like finance,
energy, and supply chain management, where understanding
the range of possible outcomes is critical. The results suggest
that:

e Chronos ZeroShot Bolt Mini is ideal for applications
requiring high precision and the ability to model uncer-
tainty effectively.

TemporalFusionTransformer provides a balance be-

tween performance and computational efficiency. mak-
ing it suitable for domain-specific forecasting tasks.

Statistical Models, while suboptimal, may still be valu-
able in scenarios where interpretability and simplicity
are prioritized over accuracy. Possible scenarios include:

-- Small Data Regimes — Statistical models like Au-
toETS and DynamicOptimizedTheta can be prefer-
able when dataset sizes are too small to effectively
train deep learning models [406], [47].

VOLUME 11, 2023

-- Interpretability — Unlike deep learning approaches,
statistical models provide clear mathematical formu-
lations, making them useful in regulatory environ-
ments where explainability is critical [47].

-- Computational Efficiency — These models are typ-
ically faster and require fewer computational re-
sources, making them suitable for real-time forecast-
ing applications with limited processing power [46],
[48], [49].

In summary, probabilistic forecasting l'esullsgmonsu"alc the
significant advantages of LLMs and deep learning models
in capturing uncertainty and generating reliable predictions.
These findings pave the way for further exploration into how
LLMs can be fine-tuned or adapted to enhance their capabil-
ities in domain-specific probabilistic forecasting tasks.

B. POINT FORECASTING

Point forecasting evaluates models based on their ability to
provide precise single-point predictions fogffuture values.
The metrics used to assess performance—Mean Absolute
Error (MAE), Symmetric Mean Absolute Percentage Err
(SMAPE), and Root Mean Square Error (RMSE)—offer a
comprehensive view of prediction accuracy and error mag-
nitude. Here’s a detailed discussion of the results for point
forecasting.

1) Overiew of Results
« Best Performing Model: The Chronos ZeroShot Bolt
Mini achieves the lowest MAE of 0.0184, indicating the
highest predictive accuracy in absolute terms. Similarly,
it attains a low SMAPE of (L0387, demonstrating its ef-
fectiveness in handling percentage-based forecast devia-
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FIGURE 4. Model Performance on MAE.

tions. This underscores the model’s superior accuracy in
point forecasting, reflecting its ability to capture patterns
in time series data with remarkable precision.However,
in RMSE, the model performs slightly behind Temporal-
FusionTransformer (0.0283) and DirectTabular (0.0284)
but remains competitive at 0.0290.

e Deep Learning Models: Among deep learning archi-
tectures, TemporalFusionTransformer (MAE: 0.0205,

RMSE: 0.0283, SMAPE: 0.0423) and PatchTST (MAE:
0.0206, RMSE: 0.0306, SMAPE: 0.0434) emerge as
strong contenders. Their performance is comparable to
Chronos ZeroShot Bolt Mini, highlighting the adapt-
ability of transformer-based architectures in time-series
forecasting. DeepAR also performed competitively, but
their slightly higher MAE and SMAPE values highlight
areas where they lag behind.
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« Machine Learning Models: Machine learning mod-
els like DirectTabular (MAE: 0.0194, RMSE: (.0284,
SMAPE: 0.0403) and TiDE (MAE: 0.0198, RMSE:
0.0288, SMAPE: 0.0413) balance efficiency and accu-
racy, making them suitable alternatives to deep learn-
ing models in scenarios requiring lower computational
costs. These models, however, fell short of the LLM
and deep learning models in RMSE, indicating some
limitations in handling larger errors.

VOLUME 11, 2023

« Statistical Models: Statistical models, while inter-
pretable, consistently ranked lower in point forecast-
ing metrics. AutoETS and DynamicOptimizedTheta
showed moderate performance, but their higher MAE
(0.023199 and 0.022266, respectively) and SMAPE val-
ues demonstrate limited adaptability to complex pat-
terns. The SeasonalNaive model performed the worst,
with substantially higher errors across all metrics (MAE:
0.045147, SMAPE: 0.090000, RMSE: 0.055393), high-
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2)

3)

lighting its inadequacy for accurate point forecasting.

Key Observations

LLMs Setting New Standards: The Chronos ZeroShot
Bolt Mini’s consistent outperformance across all metrics
indicates that LLMs are not only adept at capturing
uncertainty (probabilistic forecasting) but also excel in
point forecasting tasks. This may be due to their ability
to leverage extensive pretrained knowledge and adapt to
diverse patterns without requiring task-specific training.
Strengths of Deep Learning Models: Deep learning
models like TemporalFusionTransformer and PatchTST
demonstrated exceptional performance in metr ch
as RMSE and SMAPE. These architectures excel in cap-
turing complex temporal dependencies, which is crucial
for accurate point forecasting in dynamic environments.
Competitive Performance of Machine Learning Models:
Models like DirectTabular and TiDE showcased com-
petitive performance, particularly in MAE and SMAPE.
Their structured approach to learning relationships in
tabular data makes them well-suited for applications
where domain knowledge can enhance feature engineer-
ing.

Limitations of Statistical Models: Statistical models
such as AutoETS and DynamicOptimizedTheta, despite
being reliable in stable environments, struggled with the
complexity of real-world time series data. Their higher
error rates reflect their inability to adapt to non-linear
patterns or unexpected variations.

SeasonalNaive’s Performance: The consistently poor
performance of the SeasonalNaive model across all point
forecasting metrics underscores its overly simplistic as-
sumptions. By relying solely on repeating past seasonal
patterns, it fails to capture the nuances of more complex
datasets.

jc-Specific Insights
« Mean Absolute Error (MAE): MAE provides a straight-
forward measure of prediction accuracy. Chronos’s low-
est MAE of (L018393 highlights its precision, while the
higher values for SeasonalNaive (0.045147) and Recur-
siveTabular (0.041380) suggest significant errors in their

int forecasts.

gymmen'ic Mean Absolute Percentage Error (SMAPE):
SMAPE evaluates the relative error in predictions, mak-
ing it particularly useful for comparing models across
datasets with varying scales. The low SMAPE for
Chronos (0.038734) and DirectTabular (0.040335) illus-
trates their robust performance, while SeasonalNaive’s
EMAPE of 0.090000 reflects its inability to generate
accurate predictions.

Root Mean Square Error (RMSE): RMSE emphasizes
larger errors, making it a critical metric for applica-
tions sensitive to significant deviations. TemporalFu-
sionTransformer’s RMSE of (.028303 demonstrates its
strength in minimizing large prediction errors, while the

high RMSE of SeasonalNaive (0.055393) indicates poor
accuracy in this regard.

4) Implications for Applications

Point forecasting is essential for industries requiring precise
predictions, such as energy demand forecasting, inventory
management, and financial market analysis. The results sug-
gest:

« Chronos ZeroShot Bolt Mini is the most suitable choice
for applications demanding high accuracy, low error
margins, and robust performance across diverse condi-
tions.

TemporalFusionTransformer is ideal for domains requir-
ing a balance of interpretability, scalability, and strong
performance in minimizing larger errors.

Machine Learning Models like TiDE and DirectTabular
can be effective alternatives when computational effi-
and structured data handling are priorities.
Statistical Models, while interpretable, should be used in
environments with limited complexity or when simplic-
ity is preferred over accuracy.

The point forecasting results underscore the dominance
of LLMs and deep learning models in delivering accurate
predictions. Their advanced architectures and ability to model
intricate temporal relationships make them indispensable for
complex forecasting tasks. Machine learning models, though
competitive, highlight opportunities for improvement in han-
dling larger errors, while statistical models remain limited
to simpler use cases. These findings offer a comprehensive
view of the trade-offs involved in selecting models for point
forecasting.

C. BEST PERFORMING MODEL

The evaluation results revealed that the Chronos ZeroShot
Bolt Mini consistently outperformed all other models across
both probabilistic and point forecasting metrics, includ-
ing Waishted Quantile Loss (WQL), Scaled Quantile Loss
(SQL), Mean Absolute Error (MAE), Symmetric Mean Abso-
lute Percentage Error (SMAPE), and Root Mean Square Error
(RMSE). Research by Gruver [18] also supports this since
their LLMs show good performance against conventional
time-series ngydels. This superior performance highlighted
the potential of large language models (LLMs) for accurate
time-series forecasting.

Model Parameters
All Chronos Variants
» batch_size = 32
» fine_tune = True
» fine_tune_lr = 2e-4
o fine_tune_steps = 1000
o fine_tune_batch_size = 32

TABLE 6. Chronos FineTuning Parameters
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TABLE 7. Fine-tuning Model Evaluation

Model Size (params)  Probabilistic Forecasting Point Forecasting
g WQL SQL MAE SMAPE RMSE
‘onos-T5-Small 462M -0.029896 0241538 -0018331  -0.037076  0.025458
Chronos-T5-Base 201M -0.035466 286545  -0.027354  -0.054201  0.038880
Chronos-T5-Tiny 8.39M -0.036116 0291782 -0022868  -0.046094  0.030291
Chronos-T5-] 205M -0.036187 0292350 -0.022940  -0.046305 0030175
Chronos-Bolt 8.65M -0.039267 0317245 -0.024236  -0.048840 0031592
Chronos-Bolt-Mini ~ 212M -0.039449 0318710 -0.024534  -0.049370  0.033212
Chronos-Bolt-Base ~ 205M -0.047734 0385644 -0.020538  -0.059342 0037774
Chronos-Bolt-Small — 47.7M -0.053009 428269  -0.032835  -0.065934  0.040622

Building on this success, we conducted further experiments
by fine-tuning all Chronos model variants to explore whether
Piliuuﬂl performance improvements could be achieved.

me-tuning allows the model to better adapt to the specific
characteristics of the dataset, capturing intricate patterns and
reducing prediction errors. Table 6 shows the parameters
for the fine-tuning across all Chronos variants. Considering
both probabilistic forecasting and point forecasting, Chronos-
T5-Small (46.2M parameters) demonstrates the best overall
performance among the Chronos and Chronos-Bolt variants
as shown in Table 7.

In probabilistic forecasting, Chronos-T5-Small achieves
the lowest WQL (-0.029896) and SQL (-0.241538), indi-
cating superior performance in capturing the probabilistic
distribution of the time series. As model size increases, WQL
and SQL values deteriorate, as seen in Chronos-T5-Base
(201M), which has a higher WQL (-0.035466) and SQL
(-0.286545), and Chronos-Bolt-Small (47.7M), which has
the highest WQL (-0.053009) and SQL (-0.428269). This
suggests that smaller models like Chronos-T5-Small can ef-
fectively handle probabilistic forecasting without requiring
excessive model parameters.

For point forecasting, Chronos-T5-Small achieves the low-
est errors across MAE (-0.018331), SMAPE (-0.037076), and
RMSE (0.025458). indicating better predictive performance
in this category as well. Larger models like Chronos-T5-
Base (201M) and Chronos-Bolt-Base (205M) show higher
errors, with Chronos-Bolt-Small (47.7M) again exhibiting the
highest MAE (-0.032835), SMAPE (-0.065934), and RMSE
(0.040622). This indicates that Chronos-Bolt variants, de-
spite their architectural modifications for faster inference, do
not provide an advantage in these metrics over the original
Chronos-T5 models.

1) Key Observations ql

o Chronos-T5-Small (46.2M) achieves the best perfor-
mance across all evaluation metrics, outperforming
larger models in both probabilistic (WQL, SQL) and
point forecasting (MAE, SMAPE, RMSE).

« Chronos-Bolt variants consistently underperform com-
pared to Chronos-T5 models, with Chronos-Bolt-Small
(47.7M) having the worst WQL, SQL, MAE, SMAPE,
and RMSE values.

« Increasing model size does not improve performance,

VOLUME 11, 2023

as seen in Chronos-T5-Base (201M) and Chronos-Bolt-
Base (205M), which show worse results than smaller
models like Chronos-T5-Small.

Among the Chronos-Bolt models, there is no clear ad-
vantage in model size scaling, as Chronos-Bolt-Tiny
(8.65M) achieves better results than larger Chronos-Bolt
variants (Mini, Base, and Small).

Overall, Chronos-T5-Small provides the best trade-off be-
tween model size and forecasting performance across all eval-
uation metrics, making it the most effective model for proba-
bilistic and point forecasting tasks within the Chronos family.

2) Discrepancy Gross Fraction Parameter

The plot in Figure 7 illustrates the observed and forecasted
values for a time series using the Chronos-FineTuning Ama-
zon Chronos TS5 Small model with the Discrepancy Gross
Fraction (DGF) parameter. The following observations and
insights are derived from the results:

« Observed Data (Blue Line): The blue line represents
the actual observed values of the target variable over
time, spanning from August 2022 to December 2022.
The observed values demonstrate significant variability,
with fluctuations occurring at regular intervals. There
are noticeable peaks and troughs, indicating dynamic
patterns in the underlying data.

Forecasted Data (Orange Line): The orange line shows
the predictions generated by the Chronos TS5 Small
model with the DGF parameter. The forecasted line
closely follows the observed trend, particularly in the
later months of 2022 (October through December).
However, there are deviations where the model fails to
fully capture the magnitude of some spikes and dips in
the observed data.

Uncertainty Bands (Shaded Orange Area): The
shaded region around the forecasted line represents the
uncertainty intervals of the model’s predictions. These
intervals indicate the range within which the model
expects the true values to fall with a certain level of
confidence. The bands widen slightly in the later months
(November and December), suggesting increasing un-
certainty as the forecast horizon extends.

Model Performance: The model exhibits a reasonable
fit, with the forecasted values aligning well with the
overall trend of the observed data. However, there are
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FIGURE 8. Chronos-FineTuning Amazon Chronos T5 Small DUNF.

areas where the model underestimates or overestimates
the observed values, particularly during sharp spikes
(e.g., early August and late December).

Seasonal and Trend Dynamics: The model appears to
capture the general seasonal behavior of the data but
struggles with capturing abrupt, non-linear changes in
the observed series. This behavior could suggest that
while the Chronos TS Small model with the DGF param-
eter is adept at modeling trends and smoother variations,
its ability to react to rapid, extreme deviations might be
limited.

Chronos-FineTuning Amazon Chronos TS5 Small model
with the DGF parameter demonstrates strong predictive per-
formance for point forecasting and trend estimation. Its close
alignment with observed data and the inclusion of uncertainty
bands enhance its reliability for real-world applications. How-
ever, the model’s difficulty in accurately predicting extreme
fluctuations suggests that further enhancements, such as in-
corporating additional contextual features or employing more
complex architectures, could improve its accuracy in highly
volatile scenarios.

3) Dicrepancy Unallocated Net Fraction Parameter

The plot in Figure 8 shows the observed and forecasted val-
ues for a time series using the Chronos-FineTuning Amazon
Chronos T5 Small model with the Discrepancy Unallocated
Net Fraction (DUNF) parameter. This is compared to the pre-
viously discussed results with the DGF parameter (Figure 7).
The following observations and insights can be drawn:

« Observed Data (Blue Line): The blue line represents
the actual observed values of the target variable from
August 2022 to December 2022, Similar to the results
with the DGF parameter, the observed data demonstrate
significant variability, characterized by frequent fluctu-
ations and occasional extreme spikes, notably the sharp
increase at the end of December 2022.

Forecasted Data (Orange Line): The orange line dis-
plays the predictions generated by the Chronos T5 Small
model with the DUNF parameter. The forecasted values
align well with the general trends in the observed data,
particularly during stable periods. However, the model
struggles to capture the full magnitude of sharp fluctua-
tions, such as the spike at the end of December. This be-
havior is consistent with the results for DGF, indicating
the inherent difficulty of the model in predicting extreme
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deviations
Uncertainty Bands (Shaded Orange Area): The
shaded region represents the uncertainty intervals for the
forecasts. These intervals capture the range within which
the model predicts the true values are likely to fall. For
the DUNF parameter, the uncertainty bands are slightly
wider than those for DGF, reflecting greater uncertainty
in the predictions. This ticularly evident in Novem-
ber and December 2022. Despite the widening intervals,
some observed values, particularly the extreme spike in
December, fall outside the forecast range, indicating that
the model underestimates uncertainty for such devia-
tions.

Comparative Analysis (DUNF vs. DGF):

Trend Similarity: Both DUNF and DGF parameters
allow the Chronos T5 Small model to effectively
capture general trends and seasonal patterns in the
observed data.

Uncertainty Handling: The DUNF parameter pro-
duces slightly wider uncertainty bands than the DGF
parameter, indicating higher variance in the forecasts.

-- Extreme Fluctuations: Both parameter configurations
struggle to capture the magnitude of sharp spikes,
such as the one at the end of December.

« Insights and Implications:

-- Strengths: The Chronos T5 Small model demonstrates
robustness in capturing overall trends and moderate
fluctuations, regardless of the parameter configura-
tion (DGF or DUNF). The use of uncertainty bands
provides valuable insights for probabilistic forecast-
ing, helping to assess the confidence level of predic-
tions.

-- Weaknesses: Both DUNF and DGF configurations
show limitations in predicting extreme deviations,
particularly during periods of high volatility. This is
also confirmed by Mulyalim et al. [50], who sug-
gest that data heterogeneity in time-series models
frequently complicates the generalizability of LLMs.
The model’s under ation of uncertainty during
sharp spikes suggests the need for improved mecha-
nisms to handle non-linear and abrupt changes.
Applications: The model is well-suited for applica-
tions requiring accurate trend forecasting and mod-
erate variability, such as demand prediction, inven-
tory management, and general market analysis. For
highly dynamic environments where extreme fluctu-
ations are common, additional refinements or hybrid
approaches may be nece

The results for the DUNF parameter show similar per-
formance trends to those for the DGF parameter. While the
Chronos-FineTuning Amazon Chronos T5 Small model ef-
fectively captures overall trends and seasonal patterns, its
difficulty in handling extreme deviations remains evident.
Wider uncertainty bands in the DUNF configuration high-
light increased variability, providing an additional layer of

VOLUME 11, 2023

interpretability for the forecasts. Future enhancements could
focus on improving the model’s response to non-linear be-
haviors and extreme values to extend its applicability to more
dynamic settings.

V. CONCLUSIONS

This study comprehensively evaluated the performance of
various forecasting models. including Large Language Mod-
els (LLMs), deep learning models, machine learning mod-
els atistical models, for predicting discrepancies in
custody transfer systems. The Chronos-FineTuning Amazon
Chronos T5 Small model consistently outperformed other
models across probabilistic and point forecasting metri
showcasing its robustness in capturing uncertainty and deliv-
ering precise predictions.

Deep learning models, as the TemporalFusionTrans-
former, demonstrated competitive performance, particularly
in minimizing errors during point forecasting tasks. Machine
learning models like TiDE and DirectTabular provided an
effective balance of flexibility and accuracy but exhibited
limitations in handling uncertainty. Statistical models, while
interpretable and efficient. struggled to adapt to complex
patterns and exhibited higher error rates compared to modern
approaches.

The findings emphasize the transformative potential of
LLMs in industrial time-series forecasting, particularly in
mitigating risks associated with custody transfer discrepan-
cies. Future work could focus on enhancing the model’s abil-
ity to handle extreme deviations and incorporating dmﬁ-
specific features to further improve predictive accuracy. This
research underscores the importance of leveraging advanced
Al-driven methodologies to revolutionize operational effi-
ciency in the oil and gas industry.
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