Benchmarking 21 Open-Source
Large Language Models for
Phishing Link Detection with

Prompt Engineering

by Arbi Haza Nasution

Submission date: 05-May-2025 10:36AM (UTC+0700)
Submission ID: 2666451130

File name: J1_information-16-00366.pdf (1.31M)
Word count: 13615

Character count: 75153

01010 .
LR 1nformation
01010 -

(b

1
Article

Benchmarking 21 Open-Source Large Language Models for
Phishing Link Detection with Prompt Engineering

Arbi Haza Nasution »*(, Winda Monika (9, Aytug Onan 3, Yohei Murakami *

check for
updates

Qdem‘c Editor: HemingJia
Received: 31 March 2025

Revised: 23 April 2025
Accepted: 29 April 2025

Published:29 April 2025

Citation: Nasution, A H.; Manika, W;
Onan, A.; Murakami, Y. Benchmarking
21 Open-Source Large Language
Models for Phishing Link Qection
with Prompt Engineering. linformation
2025,16,366. hitps://doiorg/
10.3390 /infol 6050366

Copyright: ©2025 by the authors.
Licensee MDPY, Basel, Switzerland
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CCBY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

5

1 Department of Informatics Engineering, Universitas Islam Riau, Pekanbaru 28284, Indonesia

2 Dep of Library ion, Universitas Lancang Kuning, Riau 28266, Indonesia;
windamonika@unilak.acid
Department of Computer Engineering, College of Engineering and Architecture, Izmir Katip Celebi
p\’elsity, Izmir 35620, Turkey; aytug.onan@ikcu.edu.tr

4 Faculty of Information Science and Engi ing, Ril i

i@fc.ritsumei.acjp
* Correspondence: arbi@eng.uir.ac.id

i L vt

ity, Kusatsu 525-8577, Japan;

1

gbsh‘act: Phishing URL detection is critical due to the severe cybersecurity threats posed
by phishing attacks. While traditional methods rely heavily on handcrafted features and
supervised machine learning, recent advances in large language models (LLMs) provide
promising alternatives. This paper presents a comprehensive benchmarking study of
21 state-of-the-art open-source LLMs—including Llama3, Gemma, Qwen, Phi, DeepSeek,
and Mistral—for phishing URL detection. We evaluate four key prompt engineering
techniques—zero-shot, role-playing, chain-of-thought, and few-shot prompting—using
a balanced, publicly available phishing URL dataset, with no fine-tuning or additional
training of the models conducted, reinforcing the zero-shot, prompt-based nature as a
distinctive aspect of our study. The results demonstrate that large open-source LLMs
(>27B parameters) achieve performance exceeding 90% Fl-score without fine-tuning,
closely matching proprietary models. Among the prompt strategies, few-shot prompting
consistently delivers the highest accuracy (91.24% F1 with Llama3.3_70b), whereas chain-
of-thought significantly lowers accuracy and increases inference time. Additionally, our
analysis highlights smaller models (7B-27B parameters) offering strong performance with
substantially reduced computational costs. This study underscores the practical potential
of open-source LLMs for phishing detection and provides insights for effective prompt
engineering in cybersecurity applications.

Keywords: large language models; phishing link detection; prompt engineering

1. Introduction

Phishing attacks remain one of the most pervasive cybersecurity threats, causing

ificant financial and data losses worldwide. For example, recent reports estimate that
3.4 billion phishing emails are sent each day, and phishing-related data breaches cost, on
average, around $4.9 million per incident [1]. Malicious URLs embedded in emails or
messages are a primary vector for these attacks, luring users into disclosing credentials
or downloading malware. Detecting phishing URLs quickly and accurately is thus of
paramount importance to protect individuals and organizations.

Traditional phishing detection approaches have relied on machine learning models
trained on handcrafted features extracted from URLs and websites (e.g., domain reputation,

Information 2025, 16,366

https: / / doi.org /10.3390/ info16050366

4
Information 2025, 16, 366

20of 26

URL length, and the presence of certain keywords). These classical models—such as
Decision Trees, Naive Bayes, and Random Forests—have achieved high accuracy on curated
datasets (often exceeding 90%). For instance, one study reported the Naive Bayes model
achieving 95.86% accuracy on phishing URL classification, while the Decision Tree model
reached 97.02% accuracy and the Random Forest model reached the highest accuracy
(97.98%) [2]. However, such results often come with limitations. They require extensive
feature engineering or the use of metadata and may not generalize well to evolving phishing
tactics. High performance on static benchmarks can mask weaknesses against novel or
obfuscated attacks. Moreover, some traditional models can be brittle, with noise or feature
varigggns negatively impacting performance, and their decision criteria can be opaque.

In recent years, large language models (LLMs) have emerged as powerful tools for a
variety of Natural Language Processing (NLP) tasks. LLMs excel in generating coherent
ald contextually relevant text, understanding complex verbal patterns, and performing
tasks such as content summarization, sentiment analysis, and conversational Al [3-6].
LLMs have been applied to specialized fields such as medical NLP, where they assist in
tasks like medical information extraction, diagnosis, and personalized treatment plans [4].
They also show promise in the telecommunications domain [7], oil and gas industry [8], and
even in the Quranic studies [9]. Recent studies have compared human and LLM-generated
annotations across multilingual NLP tasks, revealing that LLMs can produce competitive
annotations in simpler tasks like sentiment analysis [10]. LLMs pre-trained on vast text
corpora (e.g., GPT-3/4, PaLM, and LLaMA) possess an inherent ability to understand
linguistic patterns and context, which can be harnessed for security tasks like phishing
detection. By formulating URL detection as a language understanding problem, we can
prompt an LLM to assess whether a given URL is likely to be phishing or legitimate. Early
explorations in this vein have shown promise. A study investigated using LLMs directly
via prompt engineering for phishing Umclasqiﬁcaﬂun [11]. In their case study, prompting
closed-source chat models (OpenAl’s GPT-3.5-turbo and Anthropic’s Claude 2) yielded
up to a 92.74% Fl-score on a benchmark phishing dataset, demonstrating that LLMs can
accurately discern malicious URLs from benign ones even without task-specific training.
Notably, they found Claude 2 consistently outperformed GPT-3.5 on this task (Claude
reached 92.74% F1 vs. GPT-3.5's 88.54%, under the best prompt), though both models
benefited from carefully engineered prompts. These results are remarkable, considering no
explicit feature engineering was used—the LLMs learned to detect phishing cues from the
URL strings and their own knowledge.

Despite these advancements, there are critical gaps in our understanding. Prior studies
mostly used proprietary “black-box” LLMs, accessible only via APls. Relying on closed
models poses practical limitations: they may apply content filters that block certain inputs
(indeed, GPT-3.5 sometimes refused to classify some URLs due to internal filters), their
internal reasoning is not transparent, and they incur ongoing API costs and latency that
make deployment challenging. For instance, deploying GPT-4o for phishing detection
at scale could cost approximately $0.60 per 1000 URLs (assuming 100 input tokens and
5 output tokens per request), whereas self-hosted open-source models incur only electricity
and hardware amortization. Moreover, the rapid development of open-source LLMs offers
an opportunity to build self-hosted, transparent phishing detectors, but these open models
have not been systematically benchmarked for this task. Questions remain on whether
open-source LLMs (which users can fine-tune or run on-premise) can approach the accuracy
of GPT-4/Claude, and how their inference efficiency compares. Likewise, while prompt
engineering has proven effective, we lack comparative evaluations of different prompting
strategies (e.g., zero-shot vs. few-shot) on a wide range of models. The prompt formulation
can significantly influence LLM performance, and an inappropriate prompt might even

Information 2025, 16, 366

3of26

reduce model accuracy in some cases. This challenge echoes similar findings in computer
vision, where few-shot classification has shown that performance can be greatly enhanced
by better feature representation and metric learning techniques, even under data-scarce
condiriuraz].

Our work aims to address these gaps by providing a comprehensive benchmarking
of 21 open-source LLMs for phishing URL detection using various prompt engineering
techniques. We evaluate models spanning 1.5 billion to 7()3{011 parameters from diverse
model families, using four distinct prompting strategies: (1) zero-shot prompting, (2) role-
playing promptingy (3) chain-of-thought (CoT) prompting, and (4) few-shot prompting.
We measure each model’s detection performance (accuracy, precision, recall, and F1) on
a standard balanced phishing URL dataset and also record inference execution times to
assess efficiency. Through this study, we seek to identify which open models (and prompt
approaches) are most effective for phishing detection and to elucidate the trade-offs between
detection accuracy and computational cost. Ultimately, our findings inform how one might
design a phishing detection system powered by LLMs—weighing the choice of model and
prompt to achieve high accuracyhile remaining practical for real-world deployment.

This study provides a novel comprehensive benchmarking of 21 state-of-the-art open-
source LLMs specifically for phishing URL detection, contrasting sharply with prior re-
search that primarily utilized classical machine learning techniques or focused solely on
proprietary closed-source models accessed via APls. Unlike previous studies, our work
systematically evaluates a diverse set of open-source models, illuminating the effective-
ness of various prompt engineering technjqu@partic‘ularly the practical advantages of
few-shot prompting—and demonstrating that open-source LLMSs can achieve corﬂrable
or superior performance to proprietary models. Furthermore, we provide new insights
into the strengths and weaknesses of different prompting strategies, highlighting practical
considerations for cybersecurity applications.

In the following, we discuss relevant prior work and the motivation for our bench-
marking (Section 2), describe the experimental setup, including models, data, and prompt
techniques (Section 3), present and analyze the results in terms of both performance and
efficiency (Section 4), and finally discuss implications, limitations, and future directions
(Section 5).

2. Related Works

Prior research in phishing URL detection traditionally relied heavily on supervised
machine learning models using handcrafted feamrenxfracted from URLs or associated
metadata. These approaches achieved high accuracy but often required extensive manual
feature engineering and struggled to generalize to evolving phi.slag tactics [2,13].

More recently, large pre-trained neural languagegpjodels (LLMs) such as GPT-3.5
and Claude have demonstrated impressive capabilities for various natural language tasks,
including cybersecurity-related classification problems [14,15]. Initial studies applying
these proprietary models to phishing detection have shown promising results without
explicit training, highlighting the potential of prompt engineering [16]. However, such
models present challenges, including APl access constraints, lack of tigsparency, and cost.

Recent advancements in open-source LLMs, such as LLaMA, Gemma, Qwen, Phi,
DeepSeek, and Mistral, have opened possibilities for transparent, self-hosted phishing
detection systems. Nonetheless, these open models have not been extensively benchmarked
for phishing detection. Our work directly addresses this gap by providing the first extensive
benchmarking of open-source LLMs using multiple prompt engineering methods, aiming
to clarify their practical applicability and performance relative to proprietary counterparts.

Information 2025, 16, 366

40of26

2.1. Phishing URL Detection with Traditional Machine Learning

Phishing detection has long been studied as a classification problem using various
machine learning techniques. Early approaches focused on extracting features from the URL
string or associated webpage (HTML content, WHOIS data, etc.) and training classifiers
to distinguish phishing links from legitimate ones [11]. Common lexical features include
the URL length, presence of suspicious substrings (likemxgin” or numerals in domains),
entropy of the URL string, use of HTTPS, and so on. Classifiers such as SVM, Logistic
Regression, Decision Trees, Random Forests, and Multi-Layer Perceptrons have all been
applied, often yielding high performance on benchmark datasets. For example, Sahingoz
et al. and others reported that Naive Bayes achieves 95.86% accuracy on phishing URL
classification, while a Decision Tree reaches 97.02% accuracy and a Random Forest reaches
the highest accuracy (97.98%) in controlled experiments [2]. However, these traditional
methods have notable limitations. They typically require manual feature engineering or
feature selection to be effective. As phishing techniques evolve (e.g., using homograph
attacks, adding benign-looking tokens to URLs to fool filters), fixed feature sets may
miss new patterns. Models like Random Forest also offer limited explainability in terms
of which features drive decisions. More importantly, the impressive accuracy numbers
reported in the literature can be misleading—models may overfit to the specific dataset or
distribution of phishing samples. A study highlighted the need for diverse, representative
datasets for phishing detection. Without continuous updating, an ML model trained on past
phishing data might fail against novel URLs crafted to evade those very features [17]. Thus,
maintaining and retraining such models becomes an ongoing effort as attackers adapt.

2.2. Deep Learning and Large Language Models in Security

In search of more robust solutions, researchers have turned to deep learning and more
recently, to large pre-trained models. Neural networks can automatically learn feature
representations given enough data. There have been attempts at using CNNs or RNNs
on URL strings or email text for phishing detection, which removes the need for manual
features [18]. Nonetheless, purely supervised training of deep networks still requires
sizable labeled datasets, and performance gains have been incremental. The advent of
LLMs pre-trained on billions of tokens introduces a powerful new paradigm: using the
knowledge encoded in an LLM for security tasks. LLMs are not explicitly trained on
phishing data, but they ingest vast amounts of Internet text, which likely includes many
URL examples and patterns of malicious versus safe links. An LLM might “know" certain
common phishing domains or be able to infer from context (e.g., a URL with a misleading
domain name) that it is suspicious.

Another approach is to use the LLM directly to make the classification decision via
prompting. This treats the LLM as a standalone phishing detector: we feed it the URL
(possibly with some instruction or context) and it outputs a label or explanation. A case
study was conducted comparing this prompt-based approach against fine-tuning smaller
mudelﬁ phishing URL detection [11]. They experimented with prompt engineering
on two state-of-the-art closed LLMs (GPT-3.5-turbo and Claude 2). They designed a few
prompt templates to coax the models into performing a binary classification of URa a
straightforward zero-shot prompt asking, “Is this URL phishing or legitima a, a role-
playing prompt instructing the model to act as a cybersecurity expert, and a chain-of-
thought prompt asking the model to reason, step by step, before giving an answer. Their
findings showed that prompt design significantly affected performance. GPT-3.5, in a
naive zero-shot setting, achieved around 77.9% F1 on their test set, but with an improved
prompt, this rose to 88.5% F1. Claude 2 performed strongly even with zero-shot (90.7% F1)
and reached 92.7% F1 with the chain-of-thought prompt. The chain-of-thought strategy,

Information 2025, 16, 366

50f 26

which had the model provide a rationale before the verdict, gave the highest boost for
GPT-3.5 (indicative that reasoning helped it catch more phishing cues). An interesting
observation was that across all prompt types and both models, precision was higher than
recall - meaning the LLMs were conservative, more likely to correctly identify legitimate
URLs (low false positive rate) but at the expense of missing some phishing URLs (false
negatives). In the security context, missing phishing (false negative) is arguably more
dangerous; thus, methods to increase recall (catch more phishing) are valuable.

While closed models responded well to prompt engineering, they are “black-boxes”
with hidden drawbacks for operational use. The authors noted the opaque nature of GPT-
3.5/Claude made it unclear why Claude outperformed GPT-3.5, and they experienced
minor issues like GPT-3.5 occasionally refusing to process some inputs due to content filters
(though only for 1-2 URLs). Moreover, reliance on third-party APls raises concerns of cost,
rate limits, data privacy, and lack of offline capability. This motivates the exploration of
open-source LLMs that can be run locally. The open-source Al community has produced
numerous LLMs (e.g., Meta’s LLaMA 2, MosaicML's MPT, EleutherAl’s GPT-] /Neo, etc.)
with competitive performance. By fine-tuning such models on domain-specific data, one
can create specialized detectors. Trad and Chehab pursued this by fine-tuning several
small open models (GPT-2 variants, Baby-Llama, and Bloom) on the phishing data. The
fine-tuned models achieved outstanding results—up to 97.29% F1 and 99.56% Area Under
the Curve (AUC) on the test set, exceeding the prior state-of-the-art for that dataset. This
confirms that, given training data, even relatively small open models can excel at phishing
detection. However, fine-tuning requires training infrastructure and expertise, and the
resulting model is task-specific. In contrast, prompt use of a general LLM is “zero-cost” in
terms of training, albeit potentially lower in peak accuracy [11].

Other related works further confirm the promise of LLMs in phishing
detection [14,19@. Ref. [14] developed ChatSpamDetector, utilizing GPT-4 to detect
phishing emails, achieving a remarkable accu_rannwf 99.70% and providing detailed reason-
ing to assist users. Ref. [19] demonstrated that LLMs such as GPT-4, Claude, PaLM, and
LLaMA effectively detected phishing emails, sometimes surpassing human-level detection.
Additionally, Ref. [20] proposed a multimodal LLM-based system that efficiently identifies
phishing webpages, showcasing high accuracy and interpretability, as well as robusiness
against adversarial attacks.

In summary, prior work indicates the following: (i) classical ML can detect phishing
well under controlled conditions but has maintenance and generalization issues, (ii) LLMs,
even without fine-tuning, have an innate capability to identify phishing URLs when
prompted effectively, and (iii) open-source models offer a path to deployment without
the downsides of closed APls, but their performance has not been benchmarked in depth
for this task. Our work builds on these insights by evaluating a broad array of open
LLMs with prompt-based phishing detection. We aim to see if we can attaingligh accuracy
comparable to closed models like Claude 2 (90+ F1) using open models, and to understand
the impact of prompt strategies across different model architectures. Additionally, we
explicitly measure inference speed, which is a critical factor for real-world use (scanning
millions of URLs daily). While chain-of-thought prompting improved accuracy in prior
work [11], it also entails the model generating more text (reasoning), potentially slowing
down inference dramatically. Indeed, recent research has found that for certain tasks,
prompting an LLM to “think step-by-step” can reduce performance and efficiency when
the task is straightforward [21]. Thus, we hypothesize there is a trade-off: complex prompts
might boost accuracy for some models, but simpler prompts or few-shot examples might
achieve similar results with less overhead.

Information 2025, 16, 366

60f 26

3. Experimental Setup

To investigate these questions, we designed a comprehensive evaluation involving
21 open-source LLMs and 4 prompting techniques on a standard phishing URL dataset.
In this section, we describe the models tested, the dataset and preprocessing, the prompt
formulations, and the evaluation metrics and procedure.

3.1. Open-Source LLMs Evaluated

We benchmarked 21 open-source LLMs, carefully selected to represent a diverse range
of model families, parameter sizes (from 1.5B to 70B), design objectives, and development
backgrounds. The goal was to capture a representative cross-section of the current open-
source LLM landscape while enabling meaningful comparisons across model scales and
prompting strategies. The evaluated models include the following;:

* Meta LLaMA Family: Llama3 (8B and 70B), Llama3.1 (8B and 70B), Llama3.2 (3B), and
Llama3.3 (70B)—hypothetical successive improvements of Meta’s LLaMA model
series. Parameter counts are indicated by numerical suffixes (e.g., 8B denotes
8 billion parameters).

* Google Gemma 2: Gemma?2 variants (2B, 9B, and 27B}—models introduced by Google,
designed for efficient multilingual task performance, with the 27B model demonstrat-
ing particularly strong capabilities.

s Alibaba Qwen Family: Qwen-7B, Qwen2-7B, and Qwen2.5-7B—iterations of Alibaba’s
Qwen model, progressively enhanced for broader general-purpose tasks. Each numer-
ical suffix indicates the parameter size, and successive versions incorporate iterative
improvements in architecture and training methodologies.

* Microsoft Phi Family: Phi-3 14B and Phi-4 14B—two models from Microsoft's Phi
series, notable for their relatively smaller size yet exceptional reasoning capabili-
ties. Phi-4, in particular, has been reported to achieve competitive performance
relative to significantly larger models due to advanced training methods and synthetic
data integration.

* Mistral Family: Mistral-small 24B—based on the Mistral architecture, which garnered
attention for its efficient yet strong performance. This 24B variant is evaluated as a
representative of mid-scale models.

* DeepSeek Series: DeepSeek R1 variants (1.5B, 7B, 8B, 14B, 32B, and 70B)—a series of
open-source models designed for general-purpose tasks, emphasizing scalability and
open-source model advancements. The range from very small (1.5B) to very large
(70B) allows for the examination of scaling effects within the same family.

3.2. Hardware and Environment

Inference was conducted on a system co ising four NVIDIA RTX A6000 GPUs,
each offering 49 GB of memory, running with CUDA version 12.6 and NVIDIA Driver
version 560.35.05. For most inference tasks, a single GPU was used actively, while the
remaining GPUs remained idle. The level of GPU utilization varied depending on the
model’s parameter size and the applied quantization strategy. On average, each model
instance utilized around 2-3 GB of GPU memory. Power usage ranged from 15 W during
idle periods to approximately 278 W under full computational load, with GPU temperatures
reaching up to 76 °C during intensive inference sessions.

All inference tasks were executed using Python-based scripts, with Ollama employed
to efficiently serve quantized models on GPU. For models that either exceeded available
GPU memory or lacked compatibility with CUDA-based libraries, execution was automati-
cally redirected to CPU, which considerably increased inference latency. This setup reflects

Information 2025, 16, 366

7 of 26

realistic deployment conditions for local open-source LLMs, emphasizing the importance
of memory efficiency, power consumption, and hardware resource management.

3.3 Dnmsemﬁ Preprocessing

We use the phishing URL dataset by Hannousse and Yahiouche [22] available for
download at Mendeley Data (hfl‘ps://data.mendeley.mm/ci@ets/cZgw?fiji}/S (ac-
cessed on 31 March 2()25)Bs the evaluation benchmark. This dataset contains a total of
11,430 URL samples, with an equal split of phishing and legitimate URLs (approximately
5715 each). The dataset is notable for being carefully curated and balanced, addressing
some of the biases in earlier collections. Each URL in the dataset originally comes with
a set of 87 engineered features (related to URL composition, domain info, etc) and a
label indicating phishing or legitimate. However, in line with prior LLM-based studies,
ignored the provided features and used only the raw URL text and its label. This allowed us
to evaluate the LLMs' ability to classify based solely on the URL string, without additional
structured inputs.

While the dataset offers a strong foundation for benchmarking, we acknowledge
that it does not fully represent the complexity of real-world phishing threats. Modern
phishing URLs often incorporate obfuscation techniques, dynamic tracker parameters,
multilingual domain patterns, and evolving tactics that may not be fully captured in this
static, curated dataset.

For our experiments, we focus on the same subset used by Trad and Chehab for
testing their prompts. Specifically, we take a test set of 1000 URLs, comprising 500 phishing
and 500 legitimate examples (this subset was originally sampled randomly from the full
dataset, maintaining the 50/50 balance). We did not perform any further fine-tuning or
training of the LLMs on the dataset; instead, the models are used in an out-of-the-box
manner with prompts. The 1000 URLs were presented one by one to each model with
the respective prompt template, and the model’s output was interpreted as a phishing or
legitimate prediction.

We focused exclusively on the raw URL string, intentionally excluding any contextual
metadata (such as webpage content or email headers), to simulate a content-free detection
setting that mirrors early-stage threat filtering. All URLs were provided to the models
as plain text (e.g., “http:/ /www.x.com/login/"). We performed minimal preprocessing,
ensuring each URL was a standalone input (without additional context unless added by
the prompt template), and escaping any special characters in the prompt as needed. No
browsing or content retrieval was performed—the models see only the URL string, not
the actual webpage content, focusing the task strictly on URL-based phishing detection.
This setup mimics a common real-world scenario where a security filter must judge a URL
directly (e.g., in an email) without fetching the page.

3.4. Prompt Engineering Techniques

n'n perform phishing URL classification, we employed four distinct prompt engineer-
ing techniques: zero-shot, role-playing, chain-of-thought, and few-shot prompting. Each
model was explicitly prompted to output a concise decision (“Phishing” or “Legitimate”).

For CoT prompts, we structured instructions explicitly to produce reasoning followed by

a clear, single-word verdict. The goal was to see how different pmmpl’mles might elicit

better or worse performance from the model. The prompting smegies are as follows:

* Zero-shot prompting: This is the simplest approach where the model is directly asked
to classify the URL with no examples or role context. We formulated a straight-
forward instruction, and the model is expected to output a label or a brief answer
(e.g., “Phishing” or “Legitimate”). This method leverages the model’s learned knowl-

Information 2025, 16, 366

8of 26

edge directly, with no additional guidance beyond the question. Listing 1 shows a
zero-shot prompting template.

Listing 1. Zero-shot prompting template

Classify the following URL as either phishing or legitimate.
Respond with only one word: Phishing or Legitimate.
Provide no explanation, no additional text, and mo formatting.

URL: "{url}"

Role-playing prompting: In this approach, we asked the model to adopt a specific role
or persona relevant to the task. We prompted the model as if it were a cybersecurity
analyst or phishing detection expert. Listing 2 shows the role-playing prompting
template. By role-playing, we hope the model will internalize the instruction and
provide a more informed and context-aware response, potentially improving accuracy.
The model might respond with something like: “As a cybersecurity expert, I notice
the URL has an [P address instead of a domain, which is suspicious... Therefore, this
looks like a phishing URL".

Listing 2. Role-playing prompting template

t as a seasoned cybersecurity expert who has been hired by a company to
examine and analyze URLs for potential phishing threats.

Classify the following URL as either phishing or legitimate.

Respond with only one word: Phishing or Legitimate.

Provide no explanation, no additional text, and mo formatting.

URL: "{url}"
26

Chain-of-thought prompting: Chain-of-thought prompting encourages the model
to think step by step and articulate its reasoning before arriving at a final answer.
Listing 3 shows the CoT prompting template. Our CoT prompt asked the model
to first enumerate a reasoning process, “Let’s reason this out. Is the URL <URL>
phishing? Think step by step”, and then after the reasoning, provide a final verdict
(phishing or legitimate). The expectation, based on prior work, is that some models
might perform better when they explicitly reason about features of the URL (e.g., “The
domain looks like paypal.com but has an extra token, which is a known phishing trick,
$0..."). We included instructions for the model to output the final answer clearly (such
as prefixing it with “Final answer:"). This technique has yielded gains for powerful
models on various tasks that benefit from intermediate reasoning [23]. However, it
also introduces the risk of the model “overthinking” a simple decision, and it certainly
increases the amount of text the model must generate for each query, which can slow
down inference.

Listing 3. Chain-of-thought prompting template

You are a cybersecurity analyst specializing in phishing detection.

m.r task is to analyze the following URL and determine whether it is a

phishing link or a legitimate website.

Let us reason this out carefully, step by step. Consider indicators such
as:
- Suspicious or misspelled domains

- Use of TP addresses instead of domain names

Information 2025, 16, 366 90f26

- Extra tokens or misleading subdomains
) - Use of HITP instead of HTTPS

- Known brand impersonation patterns

- Unexpected or uncommon URL structures

URL: "{url}"
Think step by step:
[Model will now generate reasoningl
. After your reasoning, provide your final classification in this format:

Final answer: [Phishing or Legitimate]

. Ew—shot prompting: Few-shot prompting provides the model with a couple of
example cases (input-output pairs) before asking it to handle the new input [23].
We constructed a prompt that included a small number of example URLs along with
their correct classification as shown in Listing 4. The few-shot examples were chosen
to be illustrative of various phishing tactics (like deceptive subdomains, HTTP vs.
HTTPS usage, and IP address links) and legitimate URLs. The expectation is that by
seeing these examples, an LLM can induce the pattern of the task (much like how GPT-
3 demonstrated few-shot learning abilities [23]), potentially improving its accuracy on
the test URL. Few-shot prompting essentially primes the model with a mini training
setin the prompt itself.

Listing 4. Few-shot prompting template

Classify the following URL as either phishing or legitimate.
Respond with only one word: Phishing or Legitimate.
Provide no explanation, no additional text, and mo formatting.

Here are some examples:

URL: "mps://suppurt—ippleld.cmn.se:ureupdate.duila.wyerywrk.cmn/a.pfsg
2623bdb063bBd/? cmd=_updatekdispatch=89e6a3bdb063bBdlbklocale=_"
Response: phishing

y : "http://www.budgetbots.com/server.php/Server)20update/index .php?
m11=HSERmDDHAIN.cnm“

Respon phishing
URL: "mps://wu.ta:eboak.:om/]nteracnve—Ielevis‘mn—ht—L:d—c:roup—n
-100230523435650/ photos/?ref=page_internal"

Response: legitimate

URL: "http://www.mypublicdomainpictures.com/"

Response: legitimate

URL: "{url}"

All prompts were designed to elicit a concise answer (ideally just a label). During
inference, we parsed the model’s output to determine the classification. Most models
would output a sentence or phrase; we checked for keywords like “phishing”, “legitimate”,
“safe”, etc., to map to the binary label. We also had to ensure consistency—for some models,
we explicitly instructed the format of the answer (e.g., “Answer with just ‘Phishing” or
‘Legitimate”.”). In cases where the model’s answer was unclear or verbose, we applied
simple rules to interpret it (for example, if the output said “This appears to be a phishing
link because...”, we count that as phishing).

Information 2025, 16, 366

100f26

3.5. Evaluation Meggies and Procedure
We evaluate each model’s performance on the 1000-url test set using standard classifi-

cation metrics: accuracy, precision, recall, and Fl-score. se are defined in the usual way,

treating “phishing” as the positive class (true positives = correctly identified phishing URLs,
false positives = legitimate URLs incorrectly flagged, etc.). In context, the following applied:

* Accuracy is the overall percentage of URLs correctly classified (phishing identified as

ishing and legitimate as legitimate).

* Precision (Positive Predictive Value) = TP /(TP + FP)—the fraction of URLs the model
flagged as “phishing” that were actually phishing. High precision means few false
shirms (false positives).

* Recall (True Positive Rate) = TP /(TP + FN)—the fraction of actual phishing URLs that
the model successfully caught. High recall means few phishing attempts slip past
andetecfed (low false negatives).

* Fl-score is the harmonic mean of precision and recall: 2 * Precision * Recall/
(Precision + Recall). F1 is a balanced measure that is useful when one wants to
account for both error types and the classes are balanced (as in our dataset).

Given our equal class distribution, accuracy can be a bit less informative (since 50% is
the baseline random accuracy), so we focus on precision, recall, and especially F1 when
comparing methods. A high F1 indicates the model is doing well on both precision and
recall fronts.

For each combination of model and prompting method (21 models x 4 prompts = 84
runs), we collected the model’s predictions for all 1000 URLs and computed these metrics.
We also recorded the inference time: essentially, how long (in seconds) it took from the start
of processing the first URL to finishing the last URL for that model+prompt. The timing
includes the model loading and prompt processing overhead for each URL (but since the
model is loaded once and kept in memory, load time is negligible relative to the per-sample
inference cost, especially for large models). We ensured that each run was performed in
isolation on the machine to avoid resource contention. 1f a model failed to produce an
output for a particular prompt (which happened rarely, e.g., one model crashed on the
chain-of-thought prompt due to length), we handled that case (e.g., counting it as a miss or
re-running with a shorter output limit).

The execution times are useful to gauge the efficiency of each model and prompt. A
model that is highly accurate but takes an impractically long time to run would be hard to
deploy at scale. We did note large differences in runtime especially for the chain-of-thought
prompt, which we will detail in the results.

4. Results

In this section, we present the benchmarking results of the 21 LLMs, focusing first on
phishing detection performance (accuracy, F1, etc.) under each prompt strategy, and then on
execution time and efficiency. We include tables and figures to summarize these findings.

4.1. Classification Performance of Different Models and Pronpts

Table 1 summarizes the Fl-scores of all 21 models under each prompting technique
(zero-shot, role-playing, chain-of-thought, and few-shot). For example, the top block of
Table 1 shows that with few-shot prompting, the best model (Llama3.3_70b) achieved
91.24% F1, whereas with chain-of-thought prompting the performances dropped signif-
icantly for most models. We use Fl-score as a succinct indicator of overall classification
effectiveness. (Accuracy, precision, and recall for each case were also computed; we will
mention notable patterns in those as needed.) The models are ordered roughly by their size
(parameter count).

Information 2025, 16, 366

11 0f26

Table 1. Fl-score (%) of 21 opcn-sacc LLMs on the phishing URL test (500 phishing, 500 legitimate)
under four promptiﬁst—mmgi(ﬁ. The best result for each model is highlighted in bold.

Model ero-shot F1(%) Role-playing F1 (%) Chain-of-Thought F1(%) Few-shotF1 (%)
deepseek-rl_1.5b 69.94 67.13 67.59 7174
gemma?2 2b 84.19 8490 7537 85.42
llama3.2_3b 7296 73.53 55.58 76.34
qwen2_7b 86.40 85.35 50.62 86.82
deepseek-rl_7b 73.14 74.23 5698 71.33
qwen2.5_7b 81.98 8326 74 44 87.22
qwen_7b 81.98 82.00 5791 75.67
deepseek-rl_8b 73.04 7329 6735 76.81
llama3_8b 85.28 84.57 67.12 88.03
llama3.1_8b 87.45 87.74 64.40 87.50
gemma2_9b 87.67 86.48 7767 86.86
phi3_14b 79.24 71.48 63.63 67.78
phid_14b 73.89 62.32 5273 77.22
deepseek-rl_l14b 8214 83.18 45.07 8L77
mistral-small_24b 88.32 8227 7.03 88.13
gemma?2_27b 87.32 8824 8034 90.31
deepseek-r1_32b 80.12 76.41 4296 80.86
deepseek-rl_70b 86.15 85.98 51.62 85.34
llama3.3_70b 88.81 90.17 47.84 91.24
llama3.1_70b 88.15 89.46 6198 89.71
llama3_70b 89.48 87.93 69.85 88.29

Several important observations can be made from Table 1:

* Few-shot prompting emerged as the best overall strategy. For the vast majority of
models, the highest F1-score is achieved with the few-shot prompt (as indicated in
bold for a few notable models). The average F1 across all models in the few-shot
setting was 82.6%, slightly higher than zero-shot (82.3%) and substantially higher
than role-playing (80.9%). Every model of moderate to large size (9B and above)
reached its peak performance with the few-shot prompt, often gaining 1-3 percentage
points in F1 over zero-shot. For example, the 70B models (“llama3.3_70b" and others)
all exceeded 89-90% F1 with few-shot, whereas they were in the high 80s with zero-
shot. Llama3.3_70b (70B) in particular achieved the top F1 of 91.24% with few-shot
prompting, which is an excellent result on this task—approaching the performance
of Claude 2 (92.7% F1) reported by prior work [11]. The few-shot examples likely
provided helpful context, effectively teaching the model the concept of phishing
detection on-the-fly [23].

* Zero-shot prompting is surprisingly strong and often nearly as good as few-shot for
many models. Several models (e.g., llama3_70b with 89.48% F1 zero-shot vs. 88.29%
F1 few-shot) actually performed slightly better in zero-shot than few-shot, though
by a negligible margin. The differences between zero-shot and role-playing for large
models are also small in many cases. This indicates that the largest models might
already have sufficient knowledge to perform well without needing examples or
elaborate role context. For instance, Llama3_70b led in zero-shot with 89.48% F1. On
the other hand, smaller models (below 10B) generally benefited more from few-shot—
e.g.,llama3.2_3b improved from 72.96% to 76.34% F1 with few-shot, a noticeable jump
for a 3B model.

* Role-playing prompts had mixed results. On average, the role persona prompt (acting
as a security expert) yielded slightly lower F1 than zero-shot. Some models did
improve with role-playing—e.g., llama3.1_8b went from 87.45% (zero-shot) to 87.74%
(role), and llama3.3_70b from 88.81% to 90.17%. Claude 2 in the closed-model study
similarly saw a benefit from the role-playing prompt [11]. In our case, the largest
models seem to respond well to role hints, but a few models were hurt by it. One
extreme case is mistral-small_24b, which dropped from 88.32% F1 zero-shot to 82.27%

Information 2025, 16, 366

12 0f 26

with the role prompt. It appears that the role-playing instruction may have confused
some models or caused them to output lengthier explanations (which might have made
extracting the final answer harder). Overall, the role prompt was not consistently
beneficial across the board, though for some top models it was on par with zero-
shot performance.

* Chain-of-thought prompting was largely detrimental for this task and these models.
This is a striking result: nearly every model saw a large drop in F1 when asked to
produce a reasoning chain. The average F1 plummeted to 59% with CoT, compared
to 82% with other methods. Some models completely failed in this mode. The most
dramatic was again mistral-small_24b, which fell to an abysmal 7.03% Fl—essentially
failing to correctly classify almost any phishing instances with CoT. We suspect that
certain models might not have properly followed the prompt to give a final answer
after reasoning, or their reasoning text confounded our simple output parsing. On
the flip side, a few models handled CoT relatively well: the Gemma?2 series (2b, 9b,
and 27b) models stand out, achieving 75-80% F1 with CoT. In fact, gemma2 27b
maintained a strong 80.34% F1 with CoT, only modestly lower than its 87-90% with
other prompts. This suggests that some models (perhaps those fine-tuned to follow
instructions or reason, like the Gemma2 family) can utilize chain-of-thought without
completely losing accuracy. However, the largest LLaMA-based models (70B) all saw
drops: e.g., llama3_70b went from 89 F1 zero-shot to 69.85% F1 with CoT. Interestingly,
in those cases, the recall often remained high but precision dropped significantly,
meaning the model would label almost everything as “phishing” when reasoning
step-by-step (catching all true phishing but also flagging many legitimate as phishing,
hence precision tanked). This aligns with the idea that forcing a model to explain can
sometimes lead it to be overly cautious or to apply some memorized rule too broadly.

Figure 1 compares the average Fl-score across the four evaluated prompt strategies:
zero-shot, role-playing, chain-of-thought, and few-shot. Few-shot prompting clearly out-
performs other .\nategies, suggesting its superior capability in guiding LLMs for phishing
detection tasks. Figure 2 provides a scatter plot illustrating the relationship between pre-
cision and recall for each model and prompting strategy (assuming Precision ~ Recall =~
F1-score for simplicity), highlighting performance distribution among prompt methods.
Higher-performing prompt methods cluster near the upper-right corner, demonstrating
balanced detection capabilities. Figure 3 shows a log-log scatter plot of inference time
rsus model size, illustrating how larger models generally incur higher inference times.
As illustrated in Figure 4, the heatmap provides a visual overview of performance across
all models and prompt types, quickly highlighting which combinations achieve optimal
performance, where warmer colors indicate higher Fl-scores. One can quickly spot that
the column corresponding to few-shot prompting has generally warmer colors (higher
performance) across most models, confirming the superiority of few-shot prompting.

Information 2025, 16, 366

13 0f 26
80
70
F 60
2
850
H
n
' 40
-
g
g 30
20
10
o = o a
2 g 5 g
i By 3 f
g s 2
& h z &
2 <
5
o
Figure 1. Average Fl-score achieved by all models under each pting method. This bar chart

summarizes the mean performance of each prompt strategy—zero-shot, role-playing, chain-of-
thought, and few-shot—across all evaluated models. Higher bars indicate the stronger overall
effectiveness of the prompt method for phishing URL classification.

Zero-shot
X Roisiaying f
x Chain-of-Thought
go| * Fewshot e
!x
L d
bl
x
60 x
s x
= x
& x*
40
20
x
20 40 60 80

Precision (%)

Figure 2. Precision-recall scatter plot for each model under different prompting strategies. Each point
represents a model’s performance (precision vs. recall) for a given prompt method; points clustered
toward the upper-right indicate high balanced accuracy (F1-score).

Information 2025, 16, 366

14 0f 26

=
=]
%

H
2
x

Inference Time (secands, log scale)

x

10t
Medel Size (Billion parameters, log scale)

19
Figurd@fjinference time vs. model sim%&ed on a log-log scale. E point represents a model,
where the x-axis denotes the number of model parameters (in billions) and the y-axis shows the aver-
age inference time per URL (in seconds). This visualization highlights the computational trade-offs
between model size and inference speed, with annotations for selected models to aid interpretation.

The poor performance of CoT prompting here is consistent with recent findings that
chain-of-thought can hurt performance on tasks that do not fundamentally require multi-
step reasoning [21]. Phishing URL detection might be such a task: it may rely more on
pattern recognition (e.g., suspicious substrings or domain patterns) than on logic or arith-
metic that truly benefits from step wise reasoning. Forcing a model to “explain itself” might
introduce noise. This is a valuable insight: while CoT prompting has been a popular tech-
nique for boosting reasoning in math or logical tasks [21,23], it may be counterproductive
for straightforward classification tasks like ours. In terms of statistical significance, the
differences between CoT and the other prompts are large enough (20-30 point swings in
F1) that we can be confident that CoT is suboptimal for most models here.

Beyond Fl-scores, we also examined precision and recall trends. Generally, we ob-
served (similar to Trad and Chehab’s findings) that in the zero-shot, role, and few-shot
settings, models tended to have precision a bit higher than recall [11]. Thatis, they produced
relatively few false positives (mislabeling legitimate URLs as phishing), but sometimes
missed some phishing URLs (false negatives). For example, llama3_70b in zero-shot had
precision = 85.7% and recall ~ 93.6%, meaning it caught 93.6% of all phishing but also
mistakenly marked some legitimate URLSs (precision 85.7%). A security practitioner might
prefer higher recall (catch all phish) even if precision drops, but raising recall often means
the model starts flagging more legitimate URLs too. In our few-shot prompts, some models
achieved a better balance. The few-shot examples likely helped models learn to be a bit more
inclusive in identifying varied phishing tricks, boosting recall. For instance, gemma2_27b
few-shot had precision 85.3%, recall 96.0%, an excellent balance (F1 90.31%). In contrast,
under CoT prompting, many models flipped to a high-recall, low-precision regime or
vice versa unpredictably. CoT often caused either very cautious behavior (e.g., one model
marked almost everything as safe except very obvious phishing, leading to low recall but
high precision, or the opposite).

Notably, the best model (Llama3.3_70b with few-shot) achieved about 91% F1 and
90.8% accuracy, with precision at 87.1% and recall at 95.8%. This indicates it only missed
about 4.2% of phishing URLs and misclassified 12.9% of the legitimate ones. This perfor-

Information 2025, 16, 366

150f26

mance is close to the closed-source Claude 2’s 92-93% F1 [11]. It is also far above what
GPT-3.5 achieved in zero-shot (78% F1) [11], demonstrating that an open model (albeit a
large one) with proper prompting can outperform a powerful APImodel that is not opti-
mally prompted. Of course, Claude 2 and GPT-4 are capable of even higher performance if
fine-tuned or given more sophisticated prompting; our point here is that open models are
catching up in their ability to handle such tasks.

HEEPSEEkﬂ’ljh- : = “
gemmaz.ze “

llama3.2_3b 5558
80
et o -
deepseekcr 7o s -

wenzaTn -
: ﬂ
deepseelerl_8b 73.08 X i
- 60

quen_7b s

llama3_8b

gemma2_8b

Model

phi3_14b 61.78

flama3.1_8b 87.45

pm’“h
40

deepseek-r1_14b

mistral-small_zab

a.emm_;zn '
deepseek-rl_70b
llama3.1_70b

llama3_70b

Zero-shot Role-playing Chain-of-Thought Few-shot
Prompt Method
Figure 4. Heatmap of Fl-scores for each model under different prompting strategies. Rows represent
individual LLMs, and columns correspond to prompt methods. Cell color intensity indicates the
Fl-score (darker cells represent higher values). This matrix allows for a visual comparison of model
performance across prompt strategies, helping to identify models that respond well to specific types
of prompting.

One might wonder how these results compare to a fully fine-tuned model on the same data.
As referenced earlier, fine-tuning even a small 117M GPT-2 on this dataset yielded over 95% F1,
and fine-tuning a larger model achieved 97% F1. Those numbers still surpass our prompting
results by a clear margin. This highlights that there is room for improvement—possibly by
fine-tuning some of these open 70B models on phishing data, one could exceed 95% F1,
combining the best of both worlds (knowledge and specialization). However, fine-tuning
70B models is non-trivial due to the computational cost. Our benchmarking provides
insight into what can be achieved without any training, which is impressive in its own
right: over 90% F1 with zero training using open models.

Information 2025, 16, 366

16 of 26

The following points summarize the performance findings:

The best prompting method was few-shot, giving the top results around 90-91% F1.
While few-shot prompting generally yielded the highest Fl-scores across models,
this trend was not universal. For example, Llama3_70b achieved a slightly higher
Fl-score with zero-shot prompting (89.48%) compared to its few-shot counterpart
(88.29%). Similar patterns were observed with a few other large models, suggesting
that for certain architectures, the inherent pre-training quality may be sufficient to
generalize well without additional in-context examples. These exceptions underscore
that prompt effectiveness is model-dependent, and few-shot prompting, while often
beneficial, should not be assumed as optimal in all cases.

Model size and quality matter—the 70B models and the well-tuned 27B model
(Gemma2) dominated the top of the leaderboard. Some mid-size models like Mistral-
small 24B and Gemma2 27B actually rivaled the 70B models in zero-shot and few-shot,
showing that a well-designed 20-30B model can be as effective as a generic 70B model
for this task. In fact, Mistral 24B had 88.3% F1 zero-shot, slightly above some 70B
variants (like llama3.1_70b at 88.15%). This is encouraging as smaller models are
cheaper to run. On the flip side, extremely small models (below 7B) struggled—e.g.,
DeepSeek-1.5B was around 70% F1, which is only slightly better than random guessing
on this balanced set, missing many phishing cases. So, there is a parameter threshold
(somewhere around 2-3B) beyond which the model has enough capacity /knowledge
to perform this task reasonably well. The range of 7-13B models generally landed in
the 80-88% F1 range with good prompting (e.g., Qwen-7B, 86-87% F1).

The prompting strategy impacts are clear: unless a task truly needs step-by-step reason-
ing, chain-of-thought prompting might be unnecessary and even harmful. Few-shot
example-based prompting appears to give consistent gains and should be part of the
toolkit for deploying LLMs in phishing detection. Role-based prompting can be tried,
but one should verify its effect on the particular model—it is not universally helpful.

4.2. Inference Efficiency and Execution Time

Besides accuracy, a practical system must consider speed and computational cost. We

measured how long each model took to process the 1000 URLs under each prompt strategy.
Several trends emerged:

Model size vs. speed: In general, larger models took longer, but the relationship
was not strictly linear and was influenced by model optimizations. For example, in
the zero-shot setting, a 7B model like Qwen-7B took about 94 s to run all 1000 URLs,
whereas the 70B model (llama3_70b) took 488 s. Roughly, the 70B model was five times
slower for 10x the parameter count, which is actually an efficient scaling (thanks to
optimized matrix multiplication on our hardware). Another 70B variant (llama3.3_70b)
was a bit faster at 400 s, possibly due to using 4-bit quantization. Mid-sized models like
27B and 24B took around 250-280 s, and 13-14B models ranged widely (one “phi4_14b"
was quite fast at 134s, whereas “phi3_14b" took 967s, indicating differences in their
implementations). Notably, one of the smallest models, DeepSeek-R1 1.5B, was ex-
tremely slow at 3854 s (over an hour) for 1000 URLs. This is likely due to the lack of
optimization (perhaps it was run on CPU or under an inefficient configuration). In
fact, all DeepSeek models were outliers: DeepSeek 8B took 10,540 s, 14B took 13,323 s,
and the 70B a whopping 33,586 s (9.3 h) for just 1000 inferences. This suggests that
the DeepSeek models were not using GPU acceleration effectively, or had very slow
generation (possibly they were not instruction-tuned and thus took many tokens to
produce an answer). By contrast, other models of similar size (e.g., LLaMA 7B, 13B,
and 70B) clearly were leveraging optimized inference. In a deployment scenario, one

Information 2025, 16, 366

17 of 26

would avoid using a model that takes seconds per URL if a competitor model can
complete itin 0.1 s with similar accuracy.

* Prompt complexity vs. speed: The length of the prompt and output affected runtime.
Zero-shot and role-playing prompts are relatively short (just the instruction and URL,
and the output is a one-word answer). Few-shot prompts are longer (they include
multiple example URLs and labels), which means the model has to process more
tokens for each inference, slowing it down somewhat. We found few-shot prompting
to incur a minor overhead: on average few-shot runs were 5-10% slower than zero-
shot for the same model. For instance, Qwen-7B zero-shot was 94 s, and with few-shot
it was 99 s. This overhead is due to the extra tokens in the prompt that the model
must read each time, plus possibly longer outputs if it mirrors the example format.
Chain-of-thought prompting, however, had a drastic impact on speed. Because CoT
prompts encourage the model to generate a reasoning sequence (several sentences)
before the final answer, the number of output tokens per query balloons. As a result,
inference time roughly doubled (or worse) under CoT prompting for every model. The
average total time for 1000 URLs with CoT was 9896 s versus 4770 s in zero-shot (a 2x
increase) across models. For example, Llama3.3-70B took 13,264 s with CoT compared
to 400 s zero-shot—over 33x slower! Even small models saw their time shoot up: the
3B model went from 106 s with zero-shot to 968 s with CoT, a 9x slowdown. The
reasoning text essentially multiplies the work. This clearly demonstrates a trade-off:
while CoT might sometimes boost accuracy (as seen in GPT-3.5 earlier [11]), it comes
at a heavy cost in speed. In our case, CoT did noteven boost accuracy for open models,
so it was all cost and no benefit.

* Fastest models: The absolute fastest run in our tests was by one of the LLaMA-derived
8B models (llama3.1_8b) at about 92 s for 1000 URLs. This equates to 0.092 s per URL
on average, or about 11 URLs per second, which is quite usable. Qwen-7B was close
at 94s. These models likely utilized GPU and had a relatively small context length
(prompt + output) to process. Using a larger batch (feeding multiple URLs at once)
could further increase throughput, but we performed this one by one for fidelity to
the prompt method.

* Slowest models: As mentioned, DeepSeek models were anomalously slow (taking
hours). Excluding those, the slowest was phi3_14b at 967 s with zero-shot—possibly
that model had some inefficiency. Most others were within 500 s even up to 70B. This
indicates that with proper optimization, even a 70B model can process two URLs per
second on a high-end GPU. If we needed to scale to millions of URLs per day (10 per
second continuously), a single 70B model instance might fall short, but a cluster or a
smaller model could handle it

Figure 5 visualizes the relationship between model size, accuracy, and speed. Figure 5a
plots each model’s best F1-score (y-axis) against its zero-shot inference time (x-axis, log scale
for clarity). We see a general trend: as F1 increases (toward 90%), the time tends to increase
(toward hundreds of seconds). The cluster of top-accuracy models (85-91% F1) includes the
70B models and the 27B model, which have moderate to high times. Meanwhile, models
that were very fast (under 150s) include 7-8B models which achieved around 82-88% F1.
There is a notable diminishing returns effect: to gain that last 5% F1 (going from 85% to 90%
F1), one has to use models that are 3-5x slower. This is an important consideration for
deployment—if 85% F1 is deemed acceptable, one could use a smaller model and benefit
from faster processing (and lower memory usage). But if >90% F1 is required, one might
need a large model and possibly to parallelize inference.

Figure 5b shows the dramatic slowdown caused by chain-of-thought prompting; it
plots the factor by which each model’s time increased under CoT vs. zero-shot. Most

Information 2025, 16, 366

18 0f 26

models have a factor between 2x and 10x, with an average around 2.1x for large optimized
models and much higher for some smaller ones. This reinforces that CoT should be used
sparingly, if at all, in high-throughput systems, unless absolutely necessary for accuracy.

(a) Phishing-detection F1-score vs. inference time (log scale)

*

Fl-score (%)

o

107 10° 07
Execution Time (seconds, log scale)

(b) Slowdown Factor due to Chain-of-Thought Prompting

lama3_70b
llama3.1_70b
llama3.3 700
deepssek-r1_job
deepseek-r1_32b
gemmaz_27b
mistral-small_24b
deepseek-rl_14b
phid_14b
phiz_14b
gemma2_9b
llama3.1_8b
llama3_8b
deepseek-11_8b|
qwen_Tb
qwen2.5_7b
deepseek-11_7b|
qwen2_Tb|
llama3.2_3b
gemmaz_2b
deepseek-rl_I 5b

Models

0 10 20 30
Slowdown Factor (Chain-ofThought / Zero-shot)
Figure 5. (a) Phishing detection Fl-score versus inference time (log scale) for various models. Each
point is a model (with its best-performing prompt). Larger models achieve higher F1 but incur higher
runtime. (b) Slowdown factor due to chain-of-thought prompting for each model (ratio of CoT time
to zero-shot time). Many models exhibit 2x to 5x slower inference with CoT, and some were even an
order of magnitude slower.

To put the timings in perspective: the fastest model (around 0.1 s per URL) could
potentially scan 600 URLs per minute, or 0.86 million URLs per day on one machine. The
slowest useful model (70B at 0.4 s per URL) could scan 216 k per day on one machine. If an
email provider needs to check billions of URLSs per day, clearly multiple instances or further
optimized versions would be needed. Another solution is to adopt a cascaded approach:
use a fast lightweight model to filter obvious cases and only send ambiguous cases to a
slower, more powerful model. Qur data suggest, for example, using a 7B model to achieve
85% F1 quickly, then, maybe only 15% of URLSs (the ones it is unsure about) go to the 70B
model for a second opinion.

One particular observation from Table 1 combined with times is that Gemma2_27b had
a very high F1 (90.31% with few-shot) while its zero-shot time was 254 s (0.254 s /URL)—a
decent middle ground. This model seems to offer a sweet spot: it is roughly 5x faster than
a 70B model but only 1-2% lower in F1. Similarly, Mistral-24B was extremely good in

Information 2025, 16, 366

19 0f26

zero-shot (88.3% F1) and took 281 s (about 0.28 s /URL). Thus, 20-30B-scaled models can be
a great choice when balancing performance and cost.

Finally, we note that memory usage was another practical aspect (notshown in tables).
The 70B models in 4-bit precision consumed around 20 GB of GPU memory, whereas a 7B
model can run in under 8 GB easily. So, deploying a large model might require expensive
hardware (GPUs with tens of GB of VRAM or running on CPU, which is slow). This further
emphasizes exploring smaller models or model compression.

5. Discussion
Our benchmarking study provides several key insights for utilizing LLMs in phishing
link detection.

5.1. Open-Source LLMs Can Achieve High Phishing Detection Performance via Prompting

We found that the best open models (70B LLaMA-based variants and a well-tuned
27B model) reached 90-91% F1 on a challenging balanced dataset of 1000 URLs. This is
on par with, or even exceeded, the performance of some closed models (GPT-3.5) using
similar prompts [11]. While the absolute best result (Claude 2 at 92.7% F1 [11]) was not
surpassed, the gap is small. This is encouraging because it suggests organizations could
use open models without needing API access to proprietary models, and still obtain very
accurate results. Moreover, with techniques like fine-tuning or few-shot learning, open
models could further improve. It is plausible that an instruction-tuned open 70B model (like
LLaMA-2-Chat) fine-tuned on phishing data would even exceed Claude’s performance, as
hinted by prior fine-tuning results reaching 97% F1 [11].

5.2. Prompting Strategies Matter: Few-Shot Qutperforms Chain-of-Thought

Our experiments clearly showed few-shot > zero-shot > role-play > chain-of-thought
in terms of average F1. The few-shot prompts likely help the model focus on relevant
aspects of the URL by example. In practice, this means thatif one is deploying an LLM
for such tasks, investing time to craft a good few-shot prompt (with diverse examples of
phishing tricks and legitimate cases) is worthwhile. It can especially yield a few extra points
of recall. Role-based prompts (e.g., telling the model it is an expert) did not universally help
and, in some cases, even hurt. This might depend on how the model was trained—some
models might not have been tuned on such “persona” instructions. It may also be that role
prompts cause more verbose outputs which complicate parsing. Therefore, we recommend
testing a role prompt on a validation set before assuming it will help.

Chain-of-thought prompts, despite their popularity and being beneficial for tasks
requiring step-by-step reasoning, performed poorly in phishing URL detection. They
massively increased latency (2-5x slower) and decreased accuracy for most models. The
intuition is that URL classification does not require heavy reasoning; it is more pattern
recognition and memory of known bad strings. Coaxing a model to produce a rationale
might distract it from those patterns or cause it to second-guess a correct gut feeling.

Our analysis indicates that this approach encouraged models to generate overly
cautious and verbose explanations, often resulting in a high number of false positives
(i.e., high recall but low precision), which significantly reduced the Fl-score. Specifically,
we observed that many models tended to label nearly every URL as “phishing” when asked
to reason step by step. This may be because, while reasoning, the models encountered
suspicious patterns and defaulted to a conservative stance. For instance, even legitimate
URLs were often flagged as phishing, with model responses concluding with statements
such as “Therefore, this appears to be a phishing link”.

Information 2025, 16, 366

200f26

Interestingly, some models—particularly the Gemma2 series—handled CoT prompt-
ing better. This may be attributed to these models being fine-tuned to follow instructions
while maintaining alignment with the final classification goal, thereby producing reasoned
answers without losing track of the task. This observation aligns with the recent litera-
ture on the risks of over-explanation and hallucinations in LLM outputs when complex
prompting is unnecessarily applied to simple classification tasks [24].

A key takeaway for prompt engineering is that increased prompt complexity does
not always translate to improved performance. In our evaluation, the simplest zero-shot
prompts already delivered strong results. Moreover, few-shot prompting—where models
are shown a few labeled examples—consistently outperformed chain-of-thought prompting
across models, without incurring additional reasoning overhead. Thus, for phishing URL
detection, prompt strategies that minimize cognitive load on the model while leveraging
pattern recognition appear to be more effective.

5.3. Model Size vs. Efficiency Trade-Off

Larger models generally performed better, but are slower. For real-world deployment,
one must consider the volume of URLs to scan and the acceptable latency. For example, in
an email gateway that needs to come up with a verdict for a URL in, say, under 200 ms to not
delay email delivery, using a 70B model might be too slow (0.4 s per URL). A compromise
could be using a 7B model which can respond in 0.1 s, at the cost of a few percentage points
of accuracy.

To mitigate this speed-accuracy trade-off, one promising approach is knowledge
distillation. Here, a large and accurate model (e.g., LLaMA 70B) could be used to generate
labeled outputs for a large corpus of URLs. These outputs would then serve as supervision
to train a smaller model (e.g., 7B or 13B), effectively transferring the large model’s decision
patterns into a faster, deployable version.

The open nature of these models means one could attempt techniques like knowledge
distillation or ensemble methods to obtain a better speed/accuracy balance. Another
complementary approach is ensemble modeling—combining the outputs of multiple mid-
sized models (e.g., several 7-13B models) to improve reliability and accuracy without
incurring the full latency of a 70B model. Such ensembles could also vote or defer to a
slower model only on uncertain inputs, thereby optimizing throughput.

Qur results showed that a 27B model was very close to 70B performance, which hints
that careful training is more important than sheer size beyond a point. Specifically, models
like Gemma2 27B and Mistral-small 24B matched or exceeded 88-90% F1 with far less
inference time and memory, suggesting that architectural efficiency and fine-tuning quality
are just as critical as scale.

We further acknowledge that deploying 70B models at scale may be impractical for
many organizations, especially those lacking access to high-end GPUs or distributed in-
ference infrastructure. These models typically require over 40 GB of GPU memory even
with 4-bit quantization, limiting their accessibility. To enable local inference of 70B models,
we relied on pre-quantized versions available in the Ollama framework. These models are
typically compressed to 4-bit representations (e.g., using GGUF format), reducing memory
usage and allowing deployment on consumer GPUs. While quantization may introduce
approximation errors, our evaluation showed no significant degradation in F1-score, while
achieving substantial reductions in latency and memory footprint. As such, our discussion
emphasizes mid-sized alternatives like the 24-27B models, which achieved nearly compara-
ble accuracy with far more efficient memory and latency profiles. Quantization techniques,
such as 4-bit GPTQ, and knowledge distillation pipelines, are especially promising for
translating performance from large models into deployable formats. In scenarios with

Information 2025, 16, 366

21 0f26

strict latency budgets, a cascading system that first applies a fast lightweight model and
defers uncertain cases to a larger model may further help balance resource constraints with
detection quality.

If an organization has the computational budget, it might still opt for the largest
model to maximize detection (since missing phishing can be very costly). But if the system
needs to handle millions of URLs per hour, then using a handful of 13B or 7B models
in parallel might be more feasible. These strategies—distillation, ensemble voting, and
selective cascading—represent viable paths toward real-world deployment of LLM-based
phishing detection under resource constraints.

5.4. Limitations and Error Analysis

While our models achieved high overall metrics, it is important to consider what
kinds of URLs they misclassified. LLMs, when used in this manner, essentially act as
pattern matchers based on their training data and understanding of URL syntax. They
might fail on adversarial or novel obfuscation techniques that were not present in their
training. For example, an attacker could include misleading tokens like “secure” or “login-
verification” in a URL to make it appear legitimate. If an LLM has learned that “secure”
is a positive word, it might wrongly judge the URL as safe. Conversely, if an attacker
includes terms that triggered phishing in many training samples, the LLM might flag even
a legitimate site that coincidentally has a similar string. The models also might not handle
internationalized domain names or homograph attacks well, depending on how URLs were
represented in their training data (e.g., a Cyrillic “a” in place of Latin “a”). Robustness to
such adversarial examples is a concern. Traditional ML systems deal with this by explicitly
checking character encodings or using a blacklist of known malicious domains. LLMs do
not have an explicit notion of such security rules unless it was in text that they have read.

The dataset we used, though balanced and well-curated, may not capture the full
diversity of the web. Real phishing links might sometimes be part of a longer URL (with
trackers, etc.) or come from certain domains that constantly rotate. Also, in a real email,
the context (email text, sender) provides additional clues; here we only gave the URL. In
practice, an LLM could combine context—for instance, an email saying “Your account
is locked, click here”—plus the URL, which might be an even stronger indicator. Our
study isolated the URL string to keep the task focused, but future work could involve
feeding more context to the model (which could either help or distract—an interesting
research question).

Although the dataset is commonly used in phishing research, its curated and static
nature introduces potential biases. For instance, it may contain overrepresented phishing
templates or domain styles, which could influence LLM pattern learning. Moreover,
certain types of phishing—such as those involving non-English domains, heavy URL
obfuscation, or dynamic redirection—are underrepresented. We recommend that future
evaluations incorporate more diverse, real-world, and multilingual datasets to improve
external validity.

Another important limitation is the size of the evaluation set. Our experiments were
conducted on a balanced subset of 1000 URLs (500 phishing and 500 legitimate) drawn
from a larger, publicly available benchmark dataset. While this subset is sufficient for
meaningful benchmarking and comparative analysis across prompt strategies and model
families, it may not fully reflect performance in real-world deployments. The decision
to use 1000 samples was driven by practical computational constraints: with 21 models
and 4 prompting strategies, a full factorial experiment required 84 independent model
runs, each incurring non-trivial inference time and GPU cost. Despite the moderate scale,
we observed consistent trends across models—particularly in the relative performance of

Information 2025, 16, 366

220f26

prompt types and model sizes—suggesting robustmess of findings. We acknowledge this as
a limitation and encourage future work to expand the empirical base.

5.5. Deployment Considerations

Deploying an open LLM for phishing detection would require integrating it into a
pipeline. One concern is consistency—LLMs can sometimes produce varied output phras-
ing. We mitigated that with careful prompt wording and parsing rules. In a production
system, one would likely constrain the model’s output (perhaps via a custom head or a
regex) to ensure a definitive label is extracted. Another consideration is model updates:
open models can be improved or fine-tuned over time. Unlike a static ML classifier, an
LLM might actually improve with new releases (for example, a future “Llama 3" model
might outperform current ones, and we could drop it in). Our results serve as a baseline
for what current (as of 2024-2025) open models achieve. As model architectures improve
(especially focusing on being lighter and faster, like the recent Mistral which packs more
punch per parameter), we expect this balance to shift—smaller models will inch closer
to the performance of the largest. In fact, the existence of multiple 70B open models in
our test allowed us to see that not all 70B models are equal—some variants (llama3.3_70b)
performed better than others (llama3_70b) in F1. This could be due to different fine-tuning
or quantization. It highlights that “size” alone does not guarantee top performance; the
quality of training data and fine-tuning matters too.

5.6. ire Improvements and Research

Future work could explore several promising directions to extend the findings of this
study. First, while this benchmarking focused on prompt-based classification accuracy and
efficiency, future research could incorporate explainability techniques to better understand
the behavior of LLMs in phishing detection tasks. For example, post-hoc interpretability
methods such as attention visualization, input attribution techniques (e.g., SHAF, LIME), or
token-level saliency maps could reveal which features of the URL strings influence model
decisions. This would help elucidate whether models rely on semantically meaningful
cues (e.g., suspicious subdomains or misleading lexical patterns) or exhibit biases toward
superficial heuristics.

Additionally, model-generated rationales—especially under chain-of-thought prompt-
ing—could be qualitatively analyzed to identify recurring reasoning strategies or common
failure modes. Such analyses may uncover the extent to which models apply valid general-
izaﬁns versus overfitting to patterns seen during pre-training.

Another promising direction is the development of hybrid explainable systems that
combine LLMs with symbolic rules or handcrafted features, allowing predictions to be
traced back to both statistical inference and interpretable logic. Integrating an explainability
layer into LLM-based phishing detection workflows would enhance transparency, improve
stakeholder trust, and potentially guide the design of safer and more accountable model
deployments in cybersecurity applications.

One other immediate extension of this work is to explore fine-tuning the best open
models on the phishing data and comparing that with prompting. The work by Trad and
Chehab suggests fine-tuning yields a large boost [11]. It would be interesting to confirm this
with a model like Llama-2-70B-chat—would it go from 91% F1 to 97% F1 after fine-tuning
on 10 k phishing URLs? If so, one could then compare that fine-tuned model’s performance
against the original (to see how much benefit the pre-training gives versus task-specific
training). Another direction is adversarial robustness testing: we could take the model and
deliberately mutate URLs in ways to fool it (e.g., inserting benign words, or typosquatting

Information 2025, 16, 366

23 0f26

domains) to see where it fails. This could guide the creation of a more robust model,
perhaps via adversarial training (training the model on those tricky examples).

To enhance generalizability, future work should explore evaluations on larger-scale
datasets, include examples from evolving phishing techniques, and consider multilingual
or context-rich phishing attacks. To further improve reliability, future work should consider
incorporating cross-validation or resampling techniques to evaluate how results vary across
different subsets of phishing data. This would help mitigate sampling bias and allow more
robust statistical comparisons between model-prompt combinations. Moreover, while
this study employed a fixed evaluation set with deterministic model outputs, it did not
include formal statistical significance testing. Future research could benefit from applying
non-parametric tests—such as the Wilcoxon signed-rank or Friedman test—to rigorously
compare model performance across prompt strategies, espedally in studies involving cross-
validation or multiple datasets. We acknowledge this as a limitation and encourage future
work to expand the empirical base.

In addition, the robustness of open-source LLMs against adversarial attacks remains
an open question. Future investigations should explore adversarial prompting, input
perturbations, and evasion techniques to assess the security of prompt-based LLM clas-
sification systems in phishing detection. Combining LLMs with symbolic or rule-based
heuristics could further improve trust and resilience in operational environments.

We also foresee integrating LLM-based URL analysis as part of a larger cybersecurity
Al assistant. For example, an LLM could take an email as input and not only classify the
URL but also explain why it might be phishing (which is useful for analysts). Some of the
chain-of-thought outputs we saw, while not improving accuracy, did produce human-
readable rationales. e fine-tune or prompt a model to provide explanations in addition to
decisions, we might improve user trust in the system’s verdicts. However, care must be taken
as LLM explanations can sometimes be convincingly wrong (so-called “hallucinations”).

Another future direction is scaling to real-time and large-scale deployment. One could
employ model distillation to create smaller models specialized in phishing detection, or use
techniques like ONNX optimization or quantization to speed up inference. Since phishing
detection is a yes/no classification, one might even convert the LLM into a more traditional
classifier by training a lightweight model (like a transformer or even a logistic regression)
on embeddings or outputs from the LLM. For instance, one could use the LLM to compute
an embedding of the URL (maybe the hidden state after processing it) and then train a
classifier on those embeddings. This hybrid approach could retain much of the LLM's
knowledge while being faster at runtime.

Lastly, as attackers adapt, we should keep the model up-to-date. Open-source LLMs
allow for continuous improvement: one could periodically fine-tune on recent phishing
kits or URLs as they emerge (something not possible with a closed APl model). This way,
the detection system can evolve alongside the threat landscape.

6. Conclusions

This comprehensive benchmarking study demonstrates that state-of-the-art open-
source LLMs, guided by carefully designed prompt engineering strategies, can effectively
detect phishing URLs with performance comparable to proprietary models. Practically,
organizations can confidently deploy open-source models as phishing detection filters
without relying on costly APl-driven closed models, benefiting from transparency, lower
operational costs, and ease of adaptation to emerging threats. Future work includes periodic
model updates with new phishing data to maintain robustness against evolving threats

and exploration of fine-tuning to further enhance detection accuracy.

Information 2025, 16, 366

24 0f26

In this paper, we conducted an in-depth benchmarking of 21 open-source large language
models on the task of phishing URL detection using prompt engineering. We demonstrated
that with appropriate prompting—espedally few-shot example-based prompts—open LLMs
can identify malicious URLs with high accuracy (exceeding 90% F1 in the best cases),
approaching the performance of top-tier proprietary models. We analyzed four prompt-
ing strategies and found that few-shot prompting consistently provided the best results,
while chain-of-thought prompting was counterproductive for this Clai‘-iﬁ(ﬁﬁ task, often
reducing accuracy and greatly increasing inference time. We also highlighted the trade-offs
between model size and efficiency: smaller 7-13B models offer faster inference with only
a modest hit in accuracy, whereas the largest 70B models give the highest accuracy at
significantly higher computational cost.

QOur results suggest that organizations have viable options to deploy Al-driven phish-
ing detection without relying on black-box services. An ensemble of open models, or a
suitably fine-tuned open model, can serve as a powerful phishing filter. However, careful
consideration must be given to the system design—from promgygonstruction to managing
latency and ensuring robusiness against adversarial inputs. There is no one-size-fits-all
solution: the choice of model and prompt may depend on the specific requirements (e.g., an
enterprise email gateway might prioritize recall and accept more false positives, whereas a
browser might want higher precision to avoid annoying users).

Future work includes exploring how incremental training (fine-tuning) of these models
on fresh phishing data can further boost performance, and how to mitigate any failure
modes observed (such as biases or blind spots in the LLM’s knowledge of URLs). We
also plan to investigate the use of LLMs for alert explanation—providing reasoning to
users or security analysts about why a URL was flagged, which can be as important as
the decision itself in practice. Additionally, expanding the scope to other related threats,
like detecting phishing emails or web content with LLMs, could leverage their broader
language understanding capabilities beyond just URLs.

In conclusion, our study shows that large language models—a cornerstone of modem
NLP—have a strong role to play in cybersecurity. By benchmarking a wide array of open
models, we provide insights into how these models can be harnessed for phishing detection.
As both Al and phishing tactics evolve, continued research at their intersection will be vital.
Using Al to fight Al-powered phishing (attackers are increasingly using tools like ChatGPT
to craft phishing lures) creates an arms race in which staying at the cutting edge of model
capability and prompt strategy is essential. We hope this work serves as a foundation
and reference point for developing next-generation phishing defenses that are accurate,
efficient, and transparent.

Author Contributions: Conceptualization, A.HN. and W.M.,; methodology, A H.N. and WM.; software,
AH.N,; validation, AH.N., WM., and A.Q.; formal analysis, A.JHLN., W.M., and A.O,; investigation,
AH.N, WM, and A.O.; resources, A H.N. and W.M; data curation, A.H.N.; writing—original draft

aration, A.JHN.; writing—review and editing, AH.N. and W.M,; visualization, A.HN.; supervision,
AHN, AQO, and YM, funding acquisiion, A.-H.N. All authors have read and agreed to the published

version of the manuscript. .
41

Funding: This research is supported by Universitas Islam Riau under research grant number
9/ KONTRAK /P-K-KI/DPPM-UIR/ 10-2024.

Institutional Review Board Statement: Not applicable.

Inft d Consent S Not applicable.

Data Availability Statement: The data presented in this study are openly available at Mendeley Data
https:/ /data.mendeley.com/datasets / 2gw 7fy2j4/3

Information 2025, 16, 366 250f26

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.

10.

11

12.

13.

14

15.

16.

17.

18.

19.

20.

21.

22

IBM Security. Cost of a Data Breach Report 2024, 2024. Available online: hitps://www.ibm.com/reports/data-breach (accessed
on 31 March 2025).

Sahingoz, O.K.; Buber, E.; Demir, O.; Diri, B. Machine learning based phishing detection from URLs. Expert Syst. Appl. 2019,
117, 345-357.

Zhao, X; Langlois, K.; Furst, |.; McClellan, S.; Fleur, R.; An, Y.; Hu, X; Uribe-Romo, F,; Gualdron, D.; Greenberg,]. When LLM
Meets Material Science: An Investigation on MOF Synthesis Labeling. In Proceedings of the 2023 IEEE International Conference on
Big Data (BigData), Sorrento, Italy, 15-18 December 2023; pp. 6320-6321. https://doiorg/10.1109/BigData59044.2023.10386438.
Hu, H.; Yan,]; Zhang, X,; Jiao, Z.; Tang, B. Overview of CHIP2023 Shared Task 4: CHIP-YIER Medical Large Language Model
Evaluation. In Communications in Computer and Information Science; Springer Nature Singapore: Singapore, 2024; pp. 127-134.
https:/ /doi.org/10.1007 /978-981-97-1717-0_11.

Schur, A.; Groenjes, S. Comparative Analysis for Open-Source Large Language Models. In Communications in Contputer and
Information Science; Springer Nature Switzerland: Cham, Switzerland, 2024; pp. 48-54. https:/ /doi.org /101007 /978-3-031-49215-
0_7.

Raiaan, M.AK ; Mukta, M.S.H ; Fatema, K; Fahad, N.M.; Sakib, S.; Mim, M\M]; Ahmad, J.; Ali, M.E; Azam, S. A Review on Large
Language Models: Architectures, Applications, Taxonomies, Open Issues and Challenges. IEEE Access 2024, 12, 26839-26874.
https:/ /doi.org/10.1109/ ACCESS 2024.3365742.

Ahmed, T; Piovesan, N.; De Domenico, A; Choudhury, 5. Linguistic Intelligence in Large Language Models for Telecommunica-
tions. In Proceedings of the 2024 IEEE International Conference on Communications Workshops (ICC Workshops), Denver, CO,
USA, 9-13 June 2024; pp. 1237-1243. https:/ /doiorg/10.1109/ICCWorkshops59551.2024.10615609.

Hidayat, F.; Nasution, A.H.; Ambia, E; Putra, D.F; Mulyandri. Leveraging Large Language Models for Discrepancy Value
Prediction in Custody Transfer Systems: A Comparative Analysis of Probabilistic and Point Forecasting Approaches. IEEE Access
2025, 13, 65643—65658. https://doi.org/10.1109/ ACCESS.2025.3560254.

Khalila, Z.; Nasution, A.H.; Monika, W.; Onan, A.; Murakami, ¥;; Radi, Y.B.L; Osmani, N.M. Investigating Retrieval- Augmented
Generation in Quranic Studies: A Study of 13 Open-Source Large Language Models. Int. J. Adv. Comput. Sci. Appl. 2025, 16.
https:/ /doi.org/10.14569 /IJACSA.2025.01602134.

Nasution, A.H.; Onan, A. ChatGPT Label: Comparing the Quality of Human-Generated and LLM-Generated Annotations in
Low-Resource Language NLP Tasks. IEEE Access 2024, 12, 71876-71900. https://doi.org/10.1109/ ACCESS.2024.3402809.
Trad, F; Chehab, A. Prompt engineering or fine-tuning? a case study on phishing detection with large language models. Mach.
Learn. Knowl, Extr. 2024, 6, 367-384.

Zhang, L,; Lin, Y.; Yang, X.; Chen, T; Cheng, X.; Cheng, W. From sample poverty to rich feature learning: A new metric learning
method for few-shot classification. IEEE Access 2024, 12, 124990-125002.

Abdelhamid, N.; Ayesh, A.; Thabtah, F. Phishing detection based on rough set theory. Expert Syst. Appl. 2014, 41, 5948-5959.
https:/ /doi.org/10.1016/j.eswa.2014.03.019.

Koide, T; Fukushi, N.; Nakano, H.; Chiba, D. Chatspamdetector: Leveraging large language models for effective phishing email
detection. ar Xiv 2024, arXiv:2402.18093.

Heiding, T.; Schiele, T.; Reuter, C. Large Language Models for Phishing Email Detection: GPT-4 vs. Humans. In Proceedings of
the 2023 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), Delft, The Netherlands, 3-7 July 2023;
Pp- 269-275. https: //doi.org/10.1109/ EuraSPW60778.2023.00046.

Trad, B.; Chehab, L. Prompting Large Language Models for Phishing URL Detection. arXiv 2023, arXiv:2311.01786.
Hannousse, A.; Yahiouche, S. Towards benchmark datasets for machine learning based website phishing detection: An
experimental study. Eng. Appl. Artif. Intell. 2021, 104, 104347.

Haq, Q.E.u.; Faheem, M.-H.; Ahmad, I. Detecting Phishing URLs Based on a Deep Learning Approach to Prevent Cyber-Attacks.
Appl. Sci. 2024, 14, 10086.

Heiding, E; Schneier, B.; Vishwanath, A.; Bernstein,].; Park, P.S. Devising and detecting phishing: Large language models vs.
smaller human models. arXiv 2023, arXiv:2308.12287.

Nicklas, F; Ventulett, N.; Conrad, J. Enhancing Phishing Email Detection with Context-Augmented Open Large Language
Models. In Proceedings of the Upper-Rhine Artificial Intelligence Symposium, Offenburg, Germany, 13th-14th November 2024;
pp- 159-166.

Liu, R,; Geng, |.; Wu, A]; Sucholutsky, I.; Lombrozo, T.; Griffiths, TL. Mind your step (by step): Chain-of-thought can reduce
performance on tasks where thinking makes humans worse. arXiv 2024, arXiv:2410.21333.

Hannousse, A.; Yahiouche, S. Web page phishing detection. Mendeley Data 2021, 3, 2021.

Information 2025, 16, 366 26 0f 26

23. Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; Xia, E; Chi, E; Le, Q.V.; Zhou, D.; et al. Chain-of-thought prompting elicits
reasoning in large language models. Adv. Neural Inf. Process. Syst. 2022, 35, 24824-24837.

24. Wang, Y; Liu, X; Peng, N. The Pitfalls of Chain-of-Thought Prompting: Contamination, Misinterpretation, and Overthinking.
arXiv 2024, arXiv:2401.01482.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDP1 and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

Benchmarking 21 Open-Source Large Language Models for
Phishing Link Detection with Prompt Engineering

ORIGINALITY REPORT

9.

/% 5% 2%

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

www.mdpi.com

Internet Source

4y

www2.mdpi.com
Internet Source p <1 %
Andrea Avignone, Alessia Tierno, Alessandro 1
A . <l
Fiori, Silvia Chiusano. "Exploring Large
Language Models’ Ability to Describe Entity-
Relationship Schema-Based Conceptual Data
Models", Information, 2025
Publication
Submitted to Long Island Universit 1
Student Paper g y < %
thesai.or /1
Internet Sourceg < %
H "Advanced Information Networking and < o
Applications", Springer Science and Business °
Media LLC, 2025
Publication
I\r/W\:(\?/r\{W\é\t/.Siupmr;ngerprofessmnal.de < %
ebin.pub 1
E Internet g)urce < %
Arbi Haza Nasution, Shella Eldwina Fitri, ’
9] <l

Rizauddin Saian, Winda Monika, Nasreen
Badruddin. "Determining Intermediary
Closely Related Languages to Find a Mediator
for Intertribal Conflict Resolution”,
Information, 2022

Publication

Submitted to Austin Peay State Universit
Student Paper y y <1 %
Kartika Resiandi, Yohei Murakami, Arbi Haza <1 o
Nasution. "Neural Network-Based Bilingual °
Lexicon Induction for Indonesian Ethnic
Languages", Applied Sciences, 2023
Publication
arxiv.org <1 .
Internet Source %
Hrvoje Karna, Maja Braovi¢, Anita Gudelj,
L R . <l%
Kristian Bulicic. "Artificial Intelligence-Based
Prediction Model for Maritime Vessel Type
|dentification", Information, 2025
Publication
"Intelligent Systems and Pattern Recognition”, <'I o
Springer Science and Business Media LLC, °
2025
Publication
Submitted to CSU, San Jose State Universit
Student Paper J y <1 %
Fouad Trad, Ali Chehab. "Prompt Engineering <1 o
or Fine-Tuning? A Case Study on Phishing °
Detection with Large Language Models",
Machine Learning and Knowledge Extraction,
2024
Publication
Tejveer Singh, Manoj Kumar, Santosh Kumar. <1
L . . %
"Walkthrough phishing detection techniques",
Computers and Electrical Engineering, 2024
Publication
www.christophtrattner.info
Internet Source p <1 %
Computational Data and Social Networks", <1 %

Springer Science and Business Media LLC,
2018

Publication

Markus Hornsteiner, Michael Kreussel, <1 %
Christoph Steindl, Fabian Ebner, Philip Empl,

Stefan Schonig. "Real-Time Text-to-Cypher

Query Generation with Large Language

Models for Graph Databases", Future

Internet, 2024

Publication

Sandareka Wickramanayake, Sanka <'I %
Rasnayaka, Madushika Gamage, Dulani
Meedeniya, Indika Perera. "Explainable
artificial intelligence for enhanced living
environments: A study on user perspective",
Elsevier BV, 2023

Publication

Subhankar Maity, Aniket Deroy. "The Future <1 %
of Learning in the Age of Generative Al:
Automated Question Generation and
Assessment with Large Language Models",
EdArXiv, 2024

Publication

Submitted to University of Melbourne '
Student Paper y < %

ceur-ws.or 4
Internet Source g < %
Jungyun Kim, Tiong-Sik Ng, Andrew Beng Jin < %

Teoh. "Learnable Anchor Embedding for
Asymmetric Face Recognition", Electronics,
2025

Publication

Nighojkar, Animesh. "An Inference-Centric

- <l
Approach to Natural Language Processing
and Cognitive Modeling", University of South
Florida, 2024

Publication

Rafi MRM, Nuski F.A.M, Suhaif A.M, Shaminda

<
K.A.S. "A Comparative Analysis of Machine 1 %

Learning Models for URL-Based Phishing
Detection", Springer Science and Business
Media LLC, 2025

Publication

csinva.io

Internet Source < %
fcase.io '
Internet Source < %
Www.coursehero.com 1
Internet Source < %
Awidi, Innocent Obed. "Investigating the < o
Efficacy of Prompt Engineering Techniques for °
Research Survey Paper Generation Using
Large Language Models.", University of
Arkansas at Little Rock, 2024
Publication
Sakib Shahrlar.Shaﬂn. An Explainable <1 %
Feature Selection Framework for Web
Phishing Detection with Machine Learning",
Data Science and Management, 2024
Publication
Zhang, Jiyin. "Knowledge-Infused LLM
o)) . <l%
Application in Data Analytics: Using Mindat as
an Example", University of Idaho, 2025
Publication
open.uct.ac.za
IntEmetSource <1 %
Abdelhakim Hannousse, Salima Yahiouche. <'] o
"Towards benchmark datasets for machine 0
learning based website phishing detection: An
experimental study", Engineering Applications
of Artificial Intelligence, 2021
Publication
Claudio Correia, Simao Paredes, Teresa <1 %

Rocha, Jorge Henriques, Jorge Bernardino.

"Benchmarking Methods for Pointwise
Reliability", Information, 2025

Publication

www.mcml.ai
Internet Source <1 %
"Natural Language Processing and Chinese <1
: : : . %
Computing", Springer Science and Business
Media LLC, 2023
Publication
The F-uture Of.AI’tIfICIa'| Intelligence gnd <’] %
Robotics", Springer Science and Business
Media LLC, 2024
Publication
Huijian Dong. "Data Analytics in Finance", CRC <1 %
Press, 2025
Publication
"Proceedings of 3rd International Conference <'] o
on Smart Computing and Cyber Security", °
Springer Science and Business Media LLC,
2024
Publication
Moraes, Athos Mekanna. "Automatic Report <1
: . : %
Generation from Histopathological Images.",
Universidade do Porto (Portugal)
Publication
ipty.de
IrE:t)er}n/etSource <1 %
Exclude quotes Off Exclude matches Off

Exclude bibliography On

