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Abstract

Geometric problems are usually solved in the Euclidean space by us-
ing the standard vector algebra techniques. In this study, principles of the
projective geometry and geometric algebra will be introduced via a novel
method that significantly simplifies the solution of geometrical problems.
A]fa it supports the GPU parallel computation application. Besides that,
an application of the principle oﬁuality leads to a simple solution of the
dual problems. We show that, the equivalence of the extended cross-product
(outer product) and the solution of the system of linear equations. This gives
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a direct impact to scientific computation, solution of geometrical problems,
robotics, computer graphics algorithms and virtual reality via fast computa-
tion through GPU parallel systems. Some numerical and graphical results
are presented.

2]
1 Geometric Algebra

The vector algebra (Gibbs algebra) used nowadays uses two basic operations on
two vectors &Jb in E”, i.e. the inner product (scalar product or dot product) ¢ =
a'b, whw ¢ is ascalar value and outer product (the cross-product in E3)c=aAb,
where ¢ 1s a bivector and has a different properties than a vector as it represents
an oriented area in n-dimensional space, in general.
The Geometric Algebra (GA) uses a “new” product called Geometric product
defined as:
ab=a-b+anb (1.1)

where ab is a geometric product.

In the case of the n-dimensional space, vectors are defined as a = (aje;+ ...+
aney), b= (bie; +... +bye,) and the e; vectors form orthonormal basis vectors in
E? then we get:

1 0-vector (scalar) e|2,er3, e ?2-\-’60(01’5 (bivectors)
ey, ey, ey, l-vector (vectors) €23 -vector (pseudoscalar)

It can be easily proved that the following operations are valid, including an inverse
of a vector.

1 , )
a-bzi(ab—l—ba) afAb=-bAa a  =a/lla|| (1.2)

It can be seen, that geometric algebra is anti-commutative and the “pseudoscalar”
[ in E3 has the basis ejere3,i.e.

ee; = —e;e; ee; =1 eere; =1 arbAhe=gq (1.3)
where ¢ is a scalar value.
In general, the geometric product is represented as:
n.n n.n

ab = aieibje; a-b=\ aje;be; (1.4)
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n.n n
a/\b: % aebe; = 2& (aibj—ajbi)ee; (1.5)
Lj=T&ki#j hj=l&i>j

It is not a “friendly user” notation for a practical application and causes prob-
lems in practical implementations, especially due to anti-commutativity of the
geometric product.

However, the geometric product can be easily represented by the tensor prod-
uct, which can be represented by a matrix. As the homogeneous coordinates will
be used in the following, the tensor product for the 4-dimensional case is pre-
sented:

aby aiby aiby apby
ab < ab’ —ach—Q = | b2 @b2 abs bl g o 5 4
repr - T T laibs azby azby azbs| ’

mby asby asby asby

1

where B + U + D are Bottom triangular, U pper triangular, Diagonal matrices, a4, b4
are the homogeneous coordinates, i.e. actually w,,w; (will be explained later),
and the operator @ means the anti-commutative tensor product.

2 Projective Extension and Principle of Duality

Let us consider the projective extension of the EufPjlean space and use of the

homogeneous coordinates. Let us consider vectors a = [a1,a2.a3 : a4]T and b=

[b1,b2,b3: b4]T, Bich represents actually vectors (a1 /as,az/as,a3 /as) and (by /ba, b2 /ba, b3 [bs)
in the £ space. ¥ can be seen, that the diagonal of the matrix Q actually repre-

sents the inner product in the projective representation:

: aghyT 2 aiby +axbr+aiby

a-b=[(a\by +ayby +azb;) 2.7
a4b4
where £ means projectively equivalent. The inner product actually represents
tracf@tr(Q) of the matrix Q.

The outer product (the cross-product in the E* case) is then represented re-
specting anti-commutativity as:

3,3 3,3
arb = (aibjeiej — biajeie;) = g (aibj— biaj)eie; (2.8)
PG =i i &>
It should be noted, that Ee outer product can be used for a solution of a linear
system of equations Ax =b or Ax = 0, too.
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The principle of duality is an important principle, in general. Its application in
geometry in connection with the implicit representation using projective geometry
brings some new formulations or even new theorems. The duality principle for
basic geometric entities and operators are presented by TAB.1 and TAB.2.

Tablgy1: Duality of geometric entities
Duality of geometric entities

Point in E? | ——= | Line in E3 Point in E° | —= | Plane in E°
DUAL DUAL

Tablgy2: Duality of operators
Duality of operators

Union L ‘ — ‘ Intersection N
DUAL

It means, that in the E2 case a pointis dual to a line and vice versa, intersection
of two lines is dual to a union of two points,i.e. line given by two points; similarly
for the E* case.

3 Computation with Homogeneous Representation

The direct consequence (éthe principle of duality 1s that, the intersection point x
of two lines py,p», resp. a line p passing two given points x|, X,, is given as:

x:p|/\pgﬁp:xu\xz (3.9

where p; = [a;,b;: ¢;]”,x =[x,y : w]T (w is the homogeneous coordinate), i = 1,2:
simprly in the dual case.

In the case of the E* space, a point is dual to a plane ad vice versa. It means
that the intersection point x of three planes p,,0,.p3, resp. a plane p passing three
given points X,X», X3 i8 given as:

x:p|/\pg/\p3ﬁp:xu\x;/\m (3.10)

where x = [x,y,z: w|T, p; = [a;, bj,ci 1 di]T,i=1,2,3.
It can be seen that the above formulae is equivalent to the “extended” cross-
product, which in natively supported by GPU architecture. For an intersection
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computation, we get:

e € e e,

el '32 ew a' b‘; f_‘| d'
X=p|/\p2: aj b| Cj X=p|/\p2/\p3= @ by o db (3.11)
an bg () - - - .

az by c3 dj
Due to the principle of duality, a dual problem solution is given as:

e] e e3 €,
e e e, 1 %2 %3 Sw

X1 oy 1w
=X AXo=|X] y1 W =X AXaNAX3 = y
P=X1AXp 1Y wi P =X AX2/AX3 X1 Y 22 W
X2 Y2 W2 L
X3 Y3 I3 w3
(3.12)

The above presented formulae prove the strength of the formal notation of
the geometric algebra approach. Therefore, there is a natural question, what is
the more convenient computation of the geometric product, as computation with
the outer product, i.e. extended cross product, using basis vector approach is not
simple.

Fortunately, the geometric product of py, p2, resp. of X; and x, vectors using
homogeneous coordinates given as anti-commutative tensor product is given as:

P1P2 | 32 b> &) > X1X2 | @2 ¥2 22 w2
ay | aay | aby | ajep | aydy X1 | X1 | X1 | Xz | Xy
by | biay | biby | bicz | bida Y1 | yixz | Y2 | y1z2 | yiwa
cy | clax | ciby | cr1e2 | avda 2 | ux2 | 2y2 | 212 | xiwa
dy | diay | diby | dicy | dida wi | wixa | wiy2 | wiza | wiwa

However, the question is how to compute a line p € E? given as an intersection of
two planes p, p2, which is dual to a line determination given by two points X1, X
as those problems T dual.

The parametric solution can be easily obtained using standard Pliicker coordi-
nates, however computation and formula are complex and not easy to understand.

® XV
q(t) = W—H@r L=xix} —xox] (3.13)

o = [la1, 142, la3]" v=[ba, a1, )" (3.14)

For the case of intersection of two planes the principle of duality can be applied
directly.
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However, using the geometric algebra, principle of duality and projective rep-
resentation, we can directly write:

=m~N =X N 3.15
P=pM Pzﬁp X; AX2 ( )

It can be seen that the formula given above keeps the duality in the final for-
mulae, too.

From the formal point of view, the geometric product for the both cases is
given as:
ayay aiby ayc; ayds
biay b\by bicy bidy

PP PLOP2= | b cier cuds (3.16)
diay diby dic; didy
The dual problem formulation:
A2 X1y2 X122 w2
XXy = X| ®X) = Y2 Yiy2 Yiza  yiw2 (3.17)

repr X2 y2 L1z w2
WIX2 Wiy2 wiza wiwa
means that we have computation of the Pliicker coordinates for the both cases,
i.e. for computation of a line p = p A p2 or p =X A X2 is given as a union of two
points in £° and as an intersection of two planes in £ using the projective repre-
sentation and the principle of duality. It should be noted that the given approach
offers: significant simplification of computation of the Pliicker coordinates as it is
simple and easy to derive and explain, uses vector-vector operations, which is es-
pecially convenient for SSE and GPU application one code sequence for the both
cases.

As the Pliicker coordinates are also in mechanical engineering applications,
especially in robotics due to its simple displacement and momentum specifica-
tions, and in other fields simple explanation and derivation is another very impor-
tant argument for GA approach application.

4 go]ution of a Linear System of Equations

A solution of a linear system of equations is a part of the linear algebra and used in
many computational systems. It should be noted, that linear equations Ax = b can
be transformed to an implicit the homogeneous system, i.e. to the form BE = 0,




Scientific Computing and Computer Graphics with GPU.... 775

As ge solution of a linear system of equations is equivalent to the outer prod-
uct (generalized cross-vector) of vectors formed by rows of the matrix B, the
solution of the system is defined as:

E=a AaxAN...Aa, [A|—b]E =0 (4.18)
which is equivalent to a solution of the linear system of equations:

ai o din X1 by
H = E (4.19)

apy  c Opp Xp by

It a very important result as a solution of a linear system of equations is for-
mally the same for systems for the both cases, i.e. Ax=0and Ax=b. As the
solution is formally determined, the formal linear operators can be used for further
symbolic processing using formula manipulation, as the geometry algebra is mul-
tilinear. Even more, it is capable to handle more complex objects generally in the
d-dimensional space, i.e. oriented surfaces, volumes etc. Therefore, it is possible
to use the Functional analysis approach: “Let L is a linear operator, then the fol-
lowing operation is valid...””. As there are many linear operators like derivation,
integration, Laplace transform etc., there is a huge potential of applications of
those to the formal solution of the linear system of equations, i.e. L(&). However,
it is necessary to respect, that in the case of projective representation a specific
care is to be taken for deriving rules for derivation etc., as actually a fraction is to
be process and similarly for other operators.

5 Conclusion

We briefly presented geometry algebra, which is not generally known and used.
However, it offers simple and efficient solutions to many computational problems,
if combined with the principle of duality n:l projective notation.

As the result, a new formulation of the Pliicker coordinates, often used in
mechanical engineering and robotics, is given. As the operations are based on
standard linear algebra formalism, they are simple to use. The presented approach
supports direct GPU application with a potential of significant speed-up and par-
allelism. Also, the approach is applicable to ¢-dimensional problem solutions, as
the geometric algebra is multidimensional.
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