
Fires Hotspot Forecasting in Indonesia
Using Long Short-Term Memory
Algorithm and MODIS Datasets

Evizal Abdul Kadir, Hsiang Tsung Kung, Arbi Haza Nasution, Hanita Daud,
Amal Abdullah AlMansour, Mahmod Othman, and Sri Listia Rosa

Abstract Vegetation fires aremost common in South and SoutheastAsian countries,
including Indonesia. In addition to anthropogenic causes, climate change in the form
of droughts is the biggest driver of fires in Indonesia. In particular, the peatlands in
Indonesia are highly vulnerable to droughts with recurrent fires. In this study, we
used a long short-term memory (LSTM) algorithm to predict the fire hotspots based
on the 2010 to 2021 fire data. More than 700,000 fire hotspots from 2010 to 2021
have been collected and used as a training dataset to forecast fires for the year 2022.
The LSTM algorithm successfully predicted 2022 fires with the minimum root mean
squared error and high accuracy. Furthermore, the results of the 2022 prediction year
matched the previous year’s fire data seasonally, with increasing fires from August
to November. The study highlights the potential use of the LSTM algorithm for
forecasting fires in Indonesia.
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1 Introduction

Fires are one of the biggest natural threats to forests, woodlands, and grasslands in
many countries, including Indonesia (Albar et al. 2018; Akther and Hassan, 2011;
Goldammer 2012; Hayasaka et al. 2014; Petropoulos et al. 2013; Justice et al. 2015;
Kadir et al. 2019, 2020, 2021). In several South/Southeast Asian countries, fire is
used to clear the forests for agriculture through slash and burn (Albar et al. 2018;
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Badarinath et al. 2007; 2008, 2009, 2015b; Badarinath and Prasad 2011; Biswas et al.
2015a); Biswas et al. 2021; Kant et al. 2000; Lasko and Vadrevu 2018; Petropoulos
et al. 2013; Prasad et al. 2001a,b; Prasad et al. 2002a, 2002b;2003; 2004; Prasad
and Badarinath 2004; Prasad et al. 2005; Prasad and Badarinth 2006; Vadrevu 2008;
2021a,b; Wooster et al. 2021; (Biswas et al. 2015a,b; Prasad et al. 2001a, b, 2002a,
b;) agricultural residues after crop harvest to clear the land for the next crop (Lasko
et al. 2017; 2018a,b; 2021; Vadrevu and Lasko 2015), to clear the forested lands
for plantations (Albar et al. 2018), promoting the growth of grass in pasture lands
for cattle (Thapa et al. 2022), etc., in addition to intentional or accidental human
activities. While most of these fires are anthropogenic, the drivers of fires can also
be natural such as lightning and extreme and prolonged drought conditions. Espe-
cially in tropical regions, there are usually two alternating rainy and dry seasons,
and forests and grassland fires are highly vulnerable to fires during the dry season.
Indonesia is one of the tropical countries with major fire issues, especially in Kali-
mantan and Sumatra Islandswith recurrent fires (Hayasaka et al. 2014). Regardless of
the ignition source, in forested areas, the fires can spread rapidly and become uncon-
trollable due to the local meteorological and environmental conditions. Further, fires
are a major important source of air pollution which results in the release of green-
house gas emissions and aerosols (Ito and Penner 2005; Gupta et al. 2001; Lasko
and Vadrevu 2018; Vadrevu and Badarinath 2009; Vadrevu and Justice 2011; Kharol
et al. 2012; Vadrevu and Lasko 2015; Vadrevu 2015; Vadrevu et al. 2008; 2013;).
The smoke particles released from fires can interact with the cloud droplets and
alter Earth’s radiation budget (Martins and Dias 2009). The GHG emissions from
biomass burning represent the largest source of inter-annual variability, in particular,
CO2 fluxes (Szopa et al. 2007; Kant et al. 2000;). Biomass burning is estimated
to contribute to 7600 ± 359 Tg CO2eq year − 1 (FAOSTAT 2020). In addition,
biomass burning has been shown to influence various land-atmospheric interactions
at different scales, such as vegetation transpiration, soil erosion, albedo (Crutzen
and Andreae 1990). Smoke-borne aerosols from fires disrupt normal hydrological
processes and reduce rainfall, potentially contributing to regional drought. In addition
to these effects on Earth’s radiation, atmosphere, climate, and ecosystems, the pollu-
tants released from the fires (Vadrevu et al. 2014a,b, 2017, 2018 2019) can impact
health resulting in asthma, acute respiratory illness, eye irritation, cardiovascular
mortality, thrombosis, etc. (Sigsgaard et al. 2015). Thus, fires can become a disaster
for humans and the environment due to their severity and intensity. Considering these
effects, mapping and monitoring of fires, including forecasting, can not only help in
understanding land-atmospheric interactions useful for climate change studies but
also protecting human lives, ecosystems, and related functions (Goldammer 2012;
Eaturu and Vadrevu 2021; Vadrevu and Justice 2011; Vadrevu et al. 2020; 2021a,b,
2022a; b).

Several techniques have been proposed to forecast fires, such as fire danger indices
combining climate data with site characteristics and fire data records (Akhter and
Hassan 2011; Vadrevu et al. 2021a, b). In addition, multiple machine learning algo-
rithms were also used to characterize fire patterns and predict fires. For most algo-
rithms, previous fire data is essential for calibration and prediction (Liang et al. 2019;
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Omar et al. 2021; Lamjiak et al. 2021; Abdul Kadir et al. 2022; Mohan et al. 2021).
These studies considered both the climate and environmental factors in predicting
the fires. Including meteorological factors in the prediction of fires is important as
they can drive accuracy. A comprehensive data analysis of fire hotspot occurrences,
their fire size, intensity, and how they can potentially spread into new areas, including
forecasting methods, were given in earlier works (Khabarov et al. 2008; Han et al.
2019; Kadir et al. 2019; Kukuk and Kilimci 2021; Prapas et al. 2021). Recently, deep
learning algorithms are gaining popularity in various fields, such as pattern recogni-
tion, including forecasting (Benzekri et al., 2020). In this study, we use the popular
long short-term memory (LSTM) algorithm to forecast fires in Indonesia for 2022.
We used the fire spots data derived from the Moderate Resolution Imaging Spec-
troradiometer (MODIS) from 2010 to 2021 and tested the algorithm’s robustness in
predicting the fires for 2022.

2 Datasets and Methodology

We used the NASA MODIS fire hotspots data from 2010–2021 for our study. Table
1 shows the sample fires dataset for Indonesia. The data has been normalized and
grouped into a single date of fire occurrence. The data has been split into training
and testing for fire forecasting. In the field of deep learning, the LSTM algorithm is
an artificial recurrent neural network (RNN) architecture and was first introduced by
Hochreiter and Schmidhuber (1997). LSTM is a special model of RNN that capable
of learning in long-term dependencies and remembering information for prolonged
periods as a default. Figure 1 shows the RNN-LSTMmodel’s architecture, consisting
of several main blocks called cells with input, output, and forget gates. The sigmoid
activation function classifies the values in probabilities for the two predefined classes
in the dense output layer.

The LSTM model can be explained as short-term memory, which acts when the
information is being acquired, retains for a few seconds, and then destines it to
be kept for more extended periods or discards it. Long-term memory permanently
retains information, allowing its recovery or recall. It contains all our autobiograph-
ical data and all our knowledge. LSTMmodel can handle the problemwith long-term
dependencies of RNN in which the RNN algorithm cannot do in the prediction of the
information stored in the long-term memory but can give more accurate prediction
from the recent information. LSTM can use by default to retain the data for a long-
term period. The algorithm can predict, process, and classify based on time series
data (Le et al. 2019). The LSTM model has an incredible way of forecasting and
works well in time series data. Furthermore, this model can organize in the form of
a chain structure and has four interacting layers with a unique method of commu-
nication in data processing. Figure 2 shows an analysis block diagram of how the
forecasting process of the fire hotspot is done in our study.
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Fig. 1 Structure of
RNN-LSTM algorithm

Fig. 2 Approach followed
for fire forecasting using
LSTM

The first step in data processing in forecasting is to construct an LSTM network
model to identify the inputs and eliminate the information that is not necessary for
the cell structure of LSTM (Fig. 1). The process of identifying and excluding data is
governed by the sigmoid function, which takes the output of the last LSTM unit ht−1

at time t − 1 and the current input Xt at time t. Additionally, the sigmoid function
determines which part from the old output should be eliminated. This gate is called
the forget gate ft ; where f is a vector with values ranging from 0 to 1, corresponding
to each number in the cell state, Ct−1. . Our collected data had more than 700,000
fire hotspots within 12 years and, after normalization, became 4365 datasets of fires
grouped in each day. The data was divided into training and testing data (Fig. 2). The
optimization process was followed to evaluate results, increase the performance and
enhance accuracy to minimize the error and final forecasting. The LSTM cell with
sigmoid function W f and b f are the weight matrices and bias, respectively, of the
forget gate. This step decides and stores the input data from the new information Xt
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Fig. 3 Internal LSTM model process

in the cell state and updates the cell state. Then, the sigmoid layer decides whether the
new data should be updated or ignored (0 or 1), and the tan h function gives weight
to the values which is passed by deciding their level of importance (1 to 1). The two
values are multiplied to update the new cell state. This new memory is then added
to the old memory Ct−1 resulting in Ct . Figure 3 depicts how the neuron process of
the LSTM model works (Chen et al., 2021).

The next step is Ct−1 and Ct are the cell states in the LSTM cell at time Ct−1 and
t while W and b are the weight matrices and bias of the cell state. In the last step,
the value of ht is based on the output cell state ot , a sigmoid layer decides which
parts of the cell state make it to the output. Next, the output of the sigmoid gate ot is
multiplied by the new values created by the tanh layer from the cell state Ct , with a
value ranging between 1 and 1. Finally, the performance of the fire forecasting was
done using the root mean square error (RMSE) with the prediction and actual data
values using the below equation (1).

RMSE =

√
√
√
√

∑n
i=1

(

Xi − X̂i

)2

n
(1)

In the equation, Xi and X ′
i are the actual fires hotspot data compared to forecasting

fires data at the time t; Xi is the mean of actual values fires data and n is the total
number of data. The smaller the RMSE values, the better the prediction.
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3 Results and Discussion

Our fire dataset consisted of several parameters such as coordinate or location of
fire occurrence, date and time, confidence level (probability of becoming a big fire
and spreading out), brightness, day or nighttime, etc. (Table 1). In addition, we
specifically used parameters that have amajor impact and are essential to forecasting,
which includes coordinates (latitude and longitude), acquisition date (acq_date), and
confidence level. Figure 4a shows themappingoffire hotspot distribution in Indonesia
for 2021 and Fig. 4b for 2020. The fire hotspots were classified into five confidence
levels, starting with the lowest from 0, low impact, and less potential to spread till
100, with high impact and high probability spread potential to become a big fire. The
five-level classifications with confidence levels are shown in different colors (0–20
blue dot; level 21–40 green; 41–60 yellow; 61–80 as orange and 81–100 red with
the highest).

Themonth-wise fire distribution is shown in Fig. 5a, b for the years 2021 and 2020,
respectively. Classification based on confidence level and the distribution matched
well with the total number of hotspots. Mostly, the map showed yellow and orange
colors with confidence levels varying from 41–60 and 61–80, respectively. While
red color is the highest potential of fire hotspots spread, they showed less in number
in the predicted map.

Results from the LSTM suggested a similar pattern and number of daily fire
hotspot incidents, with a maximum of 600 to 700 from the September to November
dry or summer season. The daily average number of hotspots is 87. Although this
number is insignificant for the entire of Indonesia, the number might increase dras-
tically due to the prevailing weather and other fire-favorable factors. Another issue
is the type of land that gets affected due to fires. For example, the Sumatra and
Kalimantan Islands peatlands are easily ignited when dry land and fires are diffi-
cult to control. The LSTM algorithm for forecasting fire hotspots in Indonesia has
been tested preliminarily to the 2121 data before 2022. Figure 6 compares actual
fire hotspot data and forecasting results for the year 2021; the results showed a good
agreement between the graphs. Preliminary forecasting suggested an RMSE error
of 4.56%. We then fine-tuned the LSTM forecasting algorithm for 2022 by training
more than 4000 datasets using the filtered data from 2010 to 2021; in essence, 30%
of the total data was used for training and the rest 70% for testing.

Figure 7 shows a good agreement and similar normal distribution patterns for all
the years, i.e., 2020, 2021, and 2022. The high occurrence of fire hotspots detected
in the early part of the year, i.e., March, and lesser in the middle of the year, then
increasing from September to November, is a typical pattern reflected in the figures.
The spikes during the few days in late September are attributed to seasonal fires in
Sumatra Island.

Overall, the LSTM RNN algorithm showed successful results with minimum
error. The results of the 2022 prediction year matched the previous 2021-year fire
data. Forecasting results in 2022 show good agreement and a similar pattern of fires
with increasing fires from August to November. By comparing the predicted data
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Fig. 4 Mapping of fires hotspots in Indonesia a year 2021 b year 2020

with the previous year’s data, we could achieve an accuracy of up to 95% with an
RMSE error of 4.56%.More robust data is required on the local conditions to achieve
further high accuracy at specific locations. Our future studies will focus on the same,
i.e., collecting and analyzing the data at a much higher spatial resolution for different
regions in Indonesia.

4 Conclusion

We demonstrated the long short-term memory (LSTM) algorithm’s potential in
predicting and forecasting fire hotspots in Indonesia. A fire hotspots dataset from
2010 to 2021 obtained from the NASA MODIS data has been used to train and
forecast fires for 2022. By comparing the predicted data with the previous year’s
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Fig. 5 Distribution of fires hotspots in Indonesia for the year from January to December a year
2021 b year 2020
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Fig. 6 Comparison of actual and fire forecasting data for year 2021

Fig. 7 Forecasting of fires hotspots in year 2022 and actual data of fires in year 2020–2021

data, we could achieve an accuracy of up to 95% with an RMSE error of 4.56%. The
forecasted fire data patterns matched the previous year’s data in seasonality from
January to December. It is noted that the number of hotspots increase by the end of
each year due to the dry season in Indonesia.
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