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Abstract
The fungal species Trichoderma is reported to have a significant impact on the growth and physiological performance of rice 
plants. However, the molecular mechanisms that induce these effects remain unspecified. Using next-generation sequencing 
technology, this study compared the differential expression of genes in rice seedlings that had been inoculated with Tricho-
derma asperellum SL2 with the gene expression in seedlings that had no such inoculation. The study showed that many 
genes related to plant growth enhancement and physiological functioning are differentially expressed in seedlings which 
have been symbiotically colonized by T. asperellum SL2. In these seedlings, specific genes related to photosynthesis, RNA 
activity, stomatal activity, and root development were found to be up-regulated as others were down-regulated. Although 
the exact causal mechanisms at the molecular level remain to be identified, the presence of Trichoderma versus its absence 
was associated with almost ten times more significant up-regulations than down-regulations for specific genes that have been 
identified from previous genomic mapping. Such analysis at the molecular level can help to explain observed phenotypic 
effects at the organismic level, and it begins to illuminate the observed beneficial relationships expressed phenotypically 
between crop plants and certain symbiotic microbes.

Keywords Gene expression · Rice · Transcriptomic analysis · Trichoderma

Introduction

Rice plant performance is shaped by environmental factors 
throughout the growth cycle. The influence of environmen-
tal factors must work through their effect on physiological 

processes and molecular signaling inside rice plant cells 
(Nguyen et al. 1997; Colmer et al. 2014; Maruyama et al. 
2014; Wu et al. 2018). Improving rice plant physiological 
characteristics and functioning is important for achieving 
higher yields (Haefele et al. 2009; Mishra and Salokhe 2011; 
Alhasnawi et al. 2017).

Symbiotic fungi are reported to have significant impacts 
on rice plant growth and physiological performance (Red-
man et al. 2011; Doni et al. 2014; Contreras-Cornejo et al. 
2014; Azad and Kaminskyj 2016; Zaidi et al. 2018). The 
mechanisms that enable symbiotic fungi to shape plant 
growth and performance include the production of diverse 
chemical substances affecting plant growth such as phyto-
hormones; phosphate-solubilizing enzymes and siderophore 
production; and eliciting alterations in plant gene expres-
sion which affects among other things their metabolic and 
defense pathways (Rodriguez et al. 2008; Wani et al. 2015).

Trichoderma spp. is one of the prominent fungus spe-
cies involved in these processes (Contreras-Cornejo et al. 
2009, 2018). This species plays several roles in improv-
ing plant growth and engages in beneficial activities that 
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include the degradation of toxins; increasing plant resist-
ance to pathogens and environmental stress; solubilizing 
soil nutrients and enhancing nutrient uptake; and increas-
ing root hair formation (Shoresh et al. 2010; Shukla et al. 
2012; Nicolás et al. 2014; Guler et al. 2016).

Despite the recognized potential of Trichoderma as a 
growth regulator in plants (Yedidia et al. 2001; Neumann 
and Laing 2006; Segarra et al. 2007; Contreras-Cornejo 
et al. 2015; Pascale et al. 2017), there are few studies of 
the exact mechanisms of Trichoderma–plant interaction. 
The influence of Trichoderma on plant gene expression 
can be assessed by doing transcriptomic studies of plants 
that have been inoculated with these microorganisms and 
comparing them with uninoculated plants.

There have been some transcriptomic studies previously 
conducted on gene expression associated with Tricho-
derma interactions with plants other than rice; for exam-
ple, cacao (Bailey et al. 2006; Bae et al. 2009), tomatoes 
(Chacón et al. 2007), and cucumber (Samolski et al. 2012). 
These studies have shown that the inoculation of plants 
with Trichoderma up-regulates a number of functional 
genes which are related to plant physiological enhance-
ment and to tolerance of abiotic stresses. Thus, transcrip-
tomic analysis of the effects of Trichoderma inoculation 
in rice plants, while interesting because of this food crop’s 
nutritional importance to half of the world’s population, 
is not unique.

The molecular mechanisms associated with Trichoderma 
inoculation of rice plants, regarded as a model monocoty-
ledon and one of the world’s most important staple crops, 
are yet to be explored. In this study, the effects of a local 
plant growth-promoting fungus T. asperellum SL2 were 
evaluated under experimental conditions. Gene expression 
patterns in rice seedlings that had been inoculated with 
Trichoderma (or not inoculated as controls) were profiled 
using next-generation sequencing technology. This method 
allowed us to sequence entire plant genomes and to sample 
entire transcriptomes quite efficiently. This technology is 
also useful for undertaking rapid gene expression analy-
sis, especially feasible for rice plants because the reference 
genome sequences for rice are readily available (Varshney 
et al. 2009).

This study thus explores mechanisms by which symbiotic 
Trichoderma can promote rice plant growth at the molecular 
level. The results of the study are expected to provide a bet-
ter foundation for further work on plant–microbe interac-
tions. The analysis shows many statistically significant asso-
ciations between microbial inoculation and up-regulation 
or down-regulation of rice plant gene expression. Exactly 
how and why this influence is exerted at the molecular level 
remains to be established, but the patterns of association if 
reliable and coherent enough will advance appreciation of 
endophytic plant–microbial symbiosis.

Materials and Methods

Fungal Growth and Rice Seed Inoculation

T. asperellum SL2 (Public Accession Number: UPMC 
1021) was propagated in potato dextrose agar and incu-
bated for 7 days at 30 °C temperature. After incubation, 
T. asperellum SL2 spores were harvested from the plates 
by adding 10 ml of sterile water and were immediately 
transferred to an Erlenmeyer flask containing sterilized 
distilled water. The spore concentration was adjusted to 
 107 spores/ml.

Malaysian rice plants (Oryza sativa L.) of variety 
MRQ74 were used for this study. The seeds were surface-
sterilized by soaking in 70% ethanol for 3 min, followed 
by soaking in 5% sodium hypochlorite for 3 min, and then 
washing them in sterilized distilled water. A total of 300 
seeds that had been soaked for 24 h in a flask containing 
a suspension of  107 spores/ml were used as the treatment; 
300 seeds that had been soaked for 24 h in sterilized dis-
tilled water without fungus spores served as the control.

Plant Material and Growth Conditions

The seeds for the treatment (T) and control (C) com-
parison were grown separately in trays for 10 days under 
greenhouse conditions (with 30 ± 4  °C temperature; 
320 ± 3 µmol light intensity; 80 ± 3% humidity; and 11 h 
11 m 17 s ± 9 s photoperiod). The 30 × 50 cm seedling 
trays each contained 500 g of sterilized soil, 500 g steri-
lized sand, and 500 g sterilized compost as the growth 
medium. Water was supplied carefully to the trays by using 
a water sprayer to avoid trauma to the plants. The soil was 
kept moist, and no standing water was allowed.

Transcriptomic Analysis

Transcriptomic analysis was carried out based on rice 
seedlings at 10 days old. Two seedlings from the respec-
tive treatment and control populations which showed the 
best growth in terms of plant height and leaf area were 
selected for transcriptomic analysis. Seedling leaves were 
ground to a powdery form (for about 1–2 min) in a mortar 
with a pestle in the presence of liquid nitrogen, and then 
RNA extraction was done using a Sepasol-RNA I Super 
G kit (Nacalai Tesque, Inc., Japan). Extraction procedures 
followed the manufacturer’s instructions. Total RNA went 
through the following four steps before library construc-
tion: (1) Agarose gel electrophoresis: testing RNA degra-
dation and potential contamination; (2) Nanodrop: testing 
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RNA purity (OD260/OD280); (3) Qubit: quantifying the 
RNA and determining concentration; and (4) Agilent 
2100: to check RNA integrity.

After the quality check procedures, two sets of RNA sam-
ples extracted from the two seedlings in each treatment group 
were pooled with a ratio 1:1. Further, mRNA was enriched 
using oligo(dT) beads. The mRNA was fragmented randomly 
in a fragmentation buffer followed by cDNA synthesis using 
random hexamers and reverse transcriptase. After first-strand 
synthesis, a custom second-strand synthesis buffer (Illumina) 
was added with dNTPs, RNase H, and Escherichia coli poly-
merase I to generate the second strand by nick-translation.

The final cDNA library was ready after a round of puri-
fication, terminal repair, A-tailing, ligation of sequencing 
adapters, size selection, and PCR enrichment. Library con-
centration was first quantified using a Qubit 2.0 fluorom-
eter (Life Technologies), and then diluted to 1 ng/µl before 
checking insert size on an Agilent 2100 bioanalyzer and 
quantifying to greater accuracy by quantitative PCR (q-PCR) 
(library activity > 2 nM). Libraries were fed into HiSeq 
machines according to activity and expected data volume 
(Novogene 2017).

Reference genome and gene-model annotation files were 
directly downloaded from a genome website (ftp://ftp.ensem 
blgen omes.org/pub/relea se-34/plant s/gff3/oryza _sativ a/). 
An index of the reference genome was built using Bowtie 
v2.2.3, and paired-end clean reads were then aligned to the 
reference genome using TopHat v2.0.12. TopHat was used 
as the mapping tool given that TopHat can generate a data-
base of splice junctions based on the gene model annotation 
file, and thus it can give better mapping results than with 
other non-splice mapping tools (Novogene 2017).

HTSeq v0.6.1 was used to count the number of reads 
mapped to each gene, and then FPKM for each gene was 
calculated based on the length of the gene and the reads 
count mapped to this gene. FPKM—the expected number 
of fragments per kilobase of transcript sequence per million 
base pairs sequenced—considers the effect of sequencing 
depth and gene length for the reads count at the same time. It 
is currently the most commonly used method for estimating 
gene expression levels (Trapnell et al. 2010). Gene Ontology 
(GO) enrichment analysis of differentially expressed genes 
was implemented by the GOseq R package, in which gene 
length bias was corrected for. GO terms with corrected p 
values less than 0.05 were considered significantly enriched 
by differently expressed genes (Novogene 2017).

Results

To parse the molecular changes in the rice seedling gene 
expression pattern that may be associated with Tricho-
derma colonization, transcriptome analysis was carried out 

to identify the differentially expressed genes (DEGs) in the 
Trichoderma-inoculated seedlings vs. uninoculated seed-
lings (Fig. 1). Based on gene ontology (GO) analysis, it was 
determined that, overall, large numbers of genes related to 
various and specific biological processes were found to be 
more active in the Trichoderma-inoculated seedlings.

Biological Processes

The genes seen in this study to be differently expressed 
are linked to a great variety of known functions and pro-
cesses: plant response to light; systemic acquired resistance; 
response to radiation; stomatal complex development; leaf 
development; root morphogenesis; carbon fixation; chlo-
rophyll biosynthetic process; response to abiotic stimulus; 
auxin transport; response to symbiont; root development; 
defense response; reactive oxygen species metabolic pro-
cesses; and photosynthesis. In Fig. 2, 301 of the 335 iden-
tified differentially affected genes were up-regulated in 
Trichoderma-inoculated rice seedlings, compared to only 
34 genes that were down-regulated.

One of the most striking findings seen in the GO anno-
tation chart is that with Trichoderma inoculation, more 
than 150 genes involved in the process of photosynthe-
sis were up-regulated. Similarly, Trichoderma inocula-
tion significantly increased the number of up-regulated 
genes associated with chlorophyll biosynthesis and with 

Fig. 1  T. asperellum SL2-inoculated seedlings, on left, have bigger 
leaves and roots compared to control plants
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stomatal development. This clearly indicates that the 
presence of a symbiotic fungus such as Trichoderma can 
beneficially alter the physiological processes of the rice 
plant, resulting in enhanced plant growth.

Another noteworthy feature of Trichoderma inocula-
tion was that many of the up-regulated genes are asso-
ciated with the enhancement of root development. Our 
DEG analysis showed that more than 17 genes related 
to root development were found to be up-regulated in 
response of Trichoderma inoculation, whereas only two 
genes of this category were recorded as down-regulated. 
This was accompanied by the up-regulation of specific 
genes related to leaf development, carbon fixation, and 
auxin transport.

It has also been detected that Trichoderma can trig-
ger defensive responses of rice seedlings against phy-
topathogenic infection. Sixteen genes that are related 
to the plant defense response were significantly up-reg-
ulated in the rice seedlings that had symbiotic Tricho-
derma. Specifically, another two genes associated with 
systemic acquired resistance (SAR) were up-regulated 
with Trichoderma inoculation, whereas one such gene 
was down-regulated.

Molecular Functions

Most of the genes involved in molecular functioning and 
metabolism were also up-regulated by the Trichoderma 
inoculation of rice seedlings. According to our DEG anal-
ysis, 84 genes involved in catalytic activity and 39 genes 
involved in ion-binding activity were up-regulated with rice 
plant–Trichoderma interaction, compared to, respectively, 23 
and 19 genes that were down-regulated (Fig. 3). Following 
the same pattern, 35 genes involved in organic cyclic com-
pound binding and another 13 genes involved in nucleotide 
binding were observed to be up-regulated. These numbers 
were roughly double the number of down-regulations: 17 
genes involved in organic cyclic compound binding, and 
eight genes involved in nucleotide binding.

Interestingly, from examining the GO charts, we found 
that six categories of molecular-function characteristics were 
over-presented in the rice seedlings with Trichoderma pres-
ence: chlorophyll binding, UDP-glucosyltransferase activity, 
RNA binding, mRNA binding, transferase activity, and lyase 
activity. All of the DEGs in these categories were observed 
to be up-regulated, whereas none were down-regulated. 
These data are consistent with the observed up-regulation 
of seven genes involved in electron carrier activity. Only one 
gene in this GO category was seen to be down-regulated.

Fig. 2  Up- and down-regulated functional genes related to biological 
processes in rice seedlings inoculated with T. asperellum SL2 versus 
control seedlings, based on gene ontology (GO) annotation. This GO 
enrichment bar chart shows the differentially expressed genes (DEGs) 
and the counts of genes for each GO category. Many more genes 
related to biological processes were found to be up-regulated in T. 
asperellum SL2-inoculated seedlings compared to control seedlings

Fig. 3  Up- and down-regulated functional genes related to molecular 
functions in rice seedlings inoculated with T. asperellum SL2 versus 
control seedlings, based on gene ontology (GO) annotation. This GO 
enrichment bar chart shows the differentially expressed genes (DEGs) 
and the counts of genes for each GO category. Many more genes 
related to molecular functions were found to be up-regulated in T. 
asperellum SL2-inoculated seedlings compared to control seedlings

Author's personal copy



1511Journal of Plant Growth Regulation (2019) 38:1507–1515 

1 3

Cellular Components

In term of genes known to affect cellular components, it was 
seen that especially the cell organs associated with photo-
synthesis were influenced by Trichoderma inoculation. A 
total of 238 genes related to the thylakoid membranes, the 
crucial components within the chloroplasts that carry out 
the light reactions of photosynthesis, were observed to be 
up-regulated with Trichoderma inoculation. Only four genes 
related to these membranes were down-regulated (Fig. 4).

Another 192 genes related to the chloroplast, one of the 
most important organelles in plant cells, were observed 
to be up-regulated, compared to just ten genes that were 
down-regulated. Regarding the organelles and cytosol of the 
cytoplasm, 76 genes were up-regulated in rice seedlings as 
a result of Trichoderma–rice plant interaction, whereas 12 
genes were down-regulated.

With respect to water membrane transport, one gene was 
up-regulated with Trichoderma inoculation, whereas none 
were observed to be down-regulated. In relation to the res-
piration process, 18 genes bearing on photosystem compo-
nents and one gene linked to the mitochondria were up-reg-
ulated with Trichoderma inoculation, whereas two genes for 
photosystem components were down-regulated. Likewise, 
multiple genes affecting plastids and the cell wall (> 80) 

were identified as up-regulated, whereas only six genes were 
down-regulated.

Discussion

Trichoderma has been recognized as a symbiotic fungus that 
can interact with plants by colonizing their roots, establish-
ing chemical communication within the plant, and then sys-
temically altering the expression of numerous plant func-
tional genes (Harman 2011). In this study, inoculating rice 
seedlings with Trichoderma was associated with the induced 
expression of hundreds of genes that are involved in energy 
metabolism, plant growth, water transport, and other meta-
bolic pathways within the plant.

This research showed that the presence (vs. absence) of 
Trichoderma was correlated with the up-regulation of many 
genes which have been identified to be involved in photosyn-
thesis and chlorophyll biosynthesis. This suggests an overall 
increase of the rice plants’ capacity for photosynthesis as a 
result of Trichoderma inoculation. In addition, the up-reg-
ulation of many genes in the chloroplast (the organelle in 
which photosynthesis occurs) would also be contributing to 
enhanced photosynthesis.

Furthermore, the up-regulation of genes related to  CO2 
fixation, response to light, and stomatal complex develop-
ment indicated an enhancement of the plant’s efficiency in 
photosynthesis. The findings from this study are consistent 
with those of Shoresh and Harman (2008a) who showed 
the ability of Trichoderma to induce significant changes in 
the proteome of the shoots of maize (Zea mays) seedlings, 
changes that were mostly related to carbohydrate metabolic 
and photosynthetic processes.

Our previous studies on the effects of T. asperellum 
SL2 on rice plants showed that this microbe’s presence 
(vs. absence) was correlated with the enhancement of rice 
seedling growth, vigor, and chlorophyll content. The effects 
of T. asperellum SL2 inoculation on the rice plants during 
their crop cycle led to significant increases in photosynthetic 
rate, stomatal density, and other physiological traits (sum-
marized in Table 1). The relationship between the System 
of Rice Intensification (SRI) management and T. asperel-
lum SL2 inoculation has been examined in parallel research 
(Doni et al. 2017, 2018; Doni 2018). This documented syn-
ergistic effect on rice plant growth and resistance to sheath 
blight when inoculation was accompanied by SRI changes 
in rice cultivation methods that enhanced root growth and 
the soil biota. The effects that those studies documented at 
the organismic level are seen here to be paralleled at the 
molecular level.

In our trials, inoculation of rice seedlings with 
Trichoderma had a significant influence on the up-reg-
ulation of many genes related to root development, root 

Fig. 4  Up- and down-regulated functional genes related to cellular 
components in rice seedlings inoculated with T. asperellum SL2 vs. 
control seedlings, based on gene ontology (GO) annotation. This GO 
enrichment bar chart shows the differentially expressed genes (DEGs) 
and the counts of genes for each GO category. Many more genes 
related to cellular components were found to be up-regulated in T. 
asperellum SL2-inoculated seedlings compared to control seedlings
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morphogenesis, and leaf development. A robust root system 
can improve water and nutrient uptake, and subsequently can 
promote plant growth and assist them in tolerating stress 
conditions (Gunapati et al. 2016). A previous study by Vit-
erbo et al. (2010) revealed the capacity of Trichoderma to 
alter a gene that encodes an ACC deaminase in Brassica 
napus, a gene that is involved in root elongation. Addition-
ally, the up-regulation of genes involved in auxin transport 
implies that the colonization of Trichoderma in rice roots 
enhances plant phytohormone dynamics.

In response to abiotic and biotic stresses, several genes 
that affect the plant response to these stresses were up-reg-
ulated in plant interactions with symbiotic Trichoderma. 
Numerous genes that are involved in the plant defense 
response, in their response to abiotic stimuli, and in reac-
tive oxygen species (ROS) metabolism were up-regulated 
with Trichoderma inoculation. An abundance of up-regu-
lated genes that relate to plant defense mechanisms can be 
considered as an indication of better plant fitness and greater 
plant ability to resist infection. This finding is in agreement 
with earlier findings by Shoresh et al. (2005) that demon-
strated the up-regulation of defense-related genes such as 
Lox1, Pal1, ETR1, and CTR1 in cucumber plants following 
Trichoderma colonization.

In this study, many genes related to the cell wall were also 
observed to be up-regulated after Trichoderma inoculation. 
As a physical barrier against pathogen invasion, the cell wall 
is critical for the plant defense system because it has numer-
ous functions such as producing antimicrobial enzymes and 
secondary metabolites (Underwood 2012; Malinovsky et al. 
2014). A study by Nawrocka and Malolepsza (2013) has 
verified the capacity of Trichoderma to release elicitors that 
may induce certain signals transmitted within the plant such 
as salicylic acid (SA), jasmonic acid (JA), and ROS.

The gene expression alterations in ROS metabolism-
related genes in this research indicated the capacity of 
Trichoderma to modulate ROS systems in rice plants. In 
plant systems, ROS have both negative and positive roles as 
reactive oxygen species are, on the one hand, toxic byprod-
ucts of aerobic metabolism, and at the same time, key regu-
lators for growth, development, and defense pathways, on 
the other (Mittler et al. 2004). When plants are exposed to 
abiotic stresses, ROS are overproduced within plants. As 
these molecules are highly reactive and toxic, they cause 
damage to proteins, lipids, carbohydrates, and DNA, even-
tually resulting in oxidative stress (Gill and Tuteja 2010). 
Thus, balancing the generation and elimination of ROS 
becomes a crucial process for maintaining plant health and 
growth.

One of the ways that adverse effects of ROS in plants 
can be modulated is by inoculating plants with symbiotic 
fungi (Rodriguez and Redman 2005). Mastouri et al. (2010) 
earlier pointed out the capacity of Trichoderma to reduce 
damage from the accumulation of ROS in tomato plants, by 
inducing physiological protection against oxidative damage. 
Further, Mastouri et al. (2012) have reported on the ability of 
Trichoderma to remove damaging ROS in tomato seedlings. 
The ability of seedlings to protect themselves from oxidative 
damage was accompanied by the up-regulation of certain 
genes for enzymes that reduce glutathione and ascorbate 
synthesis; by an increase in the activity of these enzymes; 
as well as by a shift in the redox state of glutathione and 
ascorbate pools towards a reduced state.

Recently, Pandey et al. (2016) revealed that the inocula-
tion of rice plants with Trichoderma improved drought tol-
erance by modulating transcript levels for proline, super-
oxide dismutase, lipid peroxidation product, and dehydrin/
aquaporin. The large-scale up-regulation of many genes 

Table 1  Agronomic and physiological enhancement in rice plants upon T. asperellum SL2 inoculation

Plant growth stage Agronomic advantages Physiological advantages References

Seedling stage Higher vigor index
Better shoot and root growth
Higher germination rate

Higher leaf chlorophyll content Doni et al. (2017)

Vegetative stage More tillers
More leaf numbers
Better shoot and root growth

Higher leaf chlorophyll content
Higher NPK uptake
Higher photosynthetic rate
More stomatal number
Higher stomatal conductance
Lower transpiration rate
Higher water use efficiency
More resistance to Rhizoctonia solani

Doni et al. (2014), Doni et at. (2017), Doni et al. 
(2018), Doni (2018)

Ripening stage More panicles
More leaf numbers

Higher leaf chlorophyll content
Higher photosynthetic rate

Doni et al. (2014), Doni et al. (2017), Doni et al. 
(2018)

Harvest stage More grains per panicle
More filled grains
Heavier grains

Doni et al. (2017), Doni et al. (2018)
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that affect ribosomes, thylakoid membranes, water trans-
membrane transporters, the cytoplasm, and plastids in 
rice seedlings provide further evidence that Trichoderma 
inoculation triggered large-scale changes in plant cell 
gene expression and activates numerous plant metabolic 
pathways.

The present work had thus shown promising features of 
Trichoderma as a soil inoculant. Moreover, an abundance of 
rice root exudates may attract Trichoderma to colonize rice 
roots and penetrate root tissues. Agronomic methods that 
enhance plant root growth such as SRI could create a posi-
tive feedback loop where larger root systems attract more 
Trichoderma, and these endophytes in turn support more 
plant root growth.

Vargas et al. (2011) have reported a plant-derived sucrose 
which is an important resource as a signaling molecule that 
attracts T. virens. Our study revealed a particular change 
in the rice seedlings inoculated with Trichoderma that may 
contribute to better crosstalk between this symbiont and 
rice plants because our analysis showed up-regulation of 
two genes that are involved in the plant response towards 
symbionts. This warrants further study.

The molecular functions of rice seedlings were very evi-
dently enhanced in response to Trichoderma inoculation. 
Many genes with specific functions in molecular signaling 
were up-regulated in interaction with Trichoderma: UDP-
glucosyltransferase activity, RNA binding, mRNA binding, 
transferase activity, catalytic activity, and lyase activity. 
These multiple changes indicated that there may be some 
direct connection between the capacity of Trichoderma to 
induce plant molecular signaling and its ability to promote 
plant growth. These results support the findings of Shoresh 
and Harman (2008b) who showed a large portion of the 
up-regulated proteins in maize (Z. mays) seedlings to be 
involved in amino acid metabolism, cell wall metabolism, 
and genetic information processing.

A large majority of the genes that were affected by Tricho-
derma inoculation were up-regulated. However, a minority 
were down-regulated. For example, genes involved in photo-
synthesis were found to be 155 up-regulated and six down-
regulated. This is due to the multiplicity of genes involved 
in a specific biochemical pathway. Genes were up- or down-
regulated at certain times depending on their function. Some 
genes were also functioning as negative regulators in a spe-
cific pathway (Zipfel and Oldroyd 2017). Bharti et al. (2016) 
reported that the expression levels of stress-related genes in 
control and Dietzia natronolimnaea-inoculated wheat plants 
showed major differences when under saline conditions, but 
minor differences under non-saline conditions. These differ-
ences are because salinity stress tolerance mechanisms are 
complex phenomena and involve a cumulation of changes 
in various genes guiding plant pathways. Previously, Srivas-
tava et al. (2012) revealed that genes involved in particular 

biological processes were 21% down-regulated in Arabidop-
sis plants inoculated with Pseudomonas putida.

Microbe-mediated plant growth is a multigenic process 
that is likely to be specific to the participating microbes 
and plant species (Bharti et al. 2016). An earlier study that 
showed a lipid-transfer protein gene was up-regulated in rice 
roots in response to colonization by Glomus mosseae (Blilou 
et al. 2000). In another study, some genes in P. stutzeri bac-
teria were switched on during rice root colonization but were 
switched off when grown on a synthetic medium (Rediers 
et al. 2003). These indicate that plant–microbial interactions 
are unique processes that involve two-way communication 
between microbes and host. Beneficial outcomes of these 
interactions include increasing the host’s fitness and growth 
while enabling microbes to successfully colonize the roots 
or to take up and utilize more sugars and amino acids exuded 
by the plants (Rodriguez et al. 2009).

In conclusion, as a symbiotic microbe, Trichoderma was 
able to alter gene expression in rice seedlings on a large 
scale under controlled, experimental conditions. Extensive 
up-regulation of genes with relatively little down-regulation 
contributed to better energy metabolism and plant growth 
and facilitated water transport, photosynthesis, and other 
metabolic pathways in the rice seedlings. These abilities are 
of great agriculture importance for supporting more plentiful 
and sustainable rice production.
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