ICON EEI 2022 The 3rd International Conference

on Electrical Engineering and Informatics

Virtual Conference October 19th-20th

PROCEEDINGS

SUSTAINABLE ENGINEERING FOR INDUSTRIAL REVOLUTION 4.0

IEEE Catalog Number: CFP22RPC-ART ISBN: 978-1-6654-5434-6

Organized by:

Department of Electrical Engineering Faculty of Engineering Universitas Riau

Find more information at our website: https://iconeei.id

Technical Program Committee Technical Program Committee

Abubakar Abdulkarim	Ahmadu Bello University Zaria	Nigeria
Adrianti Adrianti	Universitas Andalas	Indonesia
Hossam Afifi	Télécom SudParis, Institut Telecom	France
Mohd Ashraf Ahmad	Universiti Malaysia Pahang	Malaysia
Hamid Alasadi	IRAQ- BASRA	Iraq
Michele Albano	Aalborg University	Denmark
Irsan Ali	Universitas Riau	Indonesia
Yanti Andriyani	Universitas Riau	Indonesia
Anhar Anhar	Universitas Riau	Indonesia
Azriyenni Azhari Zakri	Universitas Riau	Indonesia
Bigomokero Bagula	University of the Western Cape	South Africa
Brahim Belmahdi	Univsesity of Abdelmalek Essaadi	Morocco
Aziza Ben Mosbah	NIST	USA
Hadj Bourdoucen	Sultan Qaboos University	Oman
Rodrigo Campos Bortoletto	Instituto Federal de São Paulo	Brazil
Feri Candra	Universitas Riau	Indonesia
Theofilos Chrysikos	University of Patras	Greece
Paolo Crippa	Marche Polytechnic University	Italy
Dahliyusmanto Dahlan	Universitas Riau	Indonesia

Krzysztof Dyczkowski	Adam Mickiewicz University	Poland
Vladimir Dyo	University of Bedfordshire	United Kingdom (Great Britain)
Fahmi Fahmi	Universitas Sumatera Utara	Indonesia
Miguel Franklin de Castro	Federal University of Ceará	Brazil
Junping Geng	Shanghai Jiaotong University	China
Weihan Goh	Singapore Institute of Technology	Singapore
Javier Gozalvez	Universidad Miguel Hernandez de Elche	Spain
Annie Gravey	Independent Expert	France
Ridha Hamila	Qatar University	Qatar
Iswadi Hasyim Rosma	Universitas Riau	Indonesia
Muhamad Syamsu Iqbal	University of Mataram	Indonesia
Carlos Alberto Kamienski	Universidade Federal do ABC	Brazil
Keh-Kim Kee	UTS	Malaysia
Dimitrios Koukopoulos	University of Patras	Greece
Montree Kumngern	King Mongkut's Institute of Technology Ladkrabang	Thailand
Rahmad Kurniawan	Universitas Riau	Indonesia
Kemas Lhaksmana	Telkom University	Indonesia
Chunguo Li	Southeast University	China

Marco Listanti	University of Rome "La Sapienza"	Italy
Jaime Lloret	Universitat Politecnica de Valencia	Spain
Pavel Loskot	ZJU-UIUC Institute	China
Renato Maaliw	Southern Luzon State University	Philippines
Ahmed Mahmood	University of Guelph	Canada
TC Manjunath	Dayananda Sagar College of Engineering, Bangalore, Karnataka	India
Noveri Marpaung	Universitas Riau	Indonesia
Natarajan Meghanathan	Jackson State University	USA
Albena Mihovska	Aarhus University	Denmark
Paul Mitchell	University of York	United Kingdom (Great Britain)
Lei Mo	INRIA	France
Stefan Alexandru Mocanu	University Politehnica of Bucharest	Romania
Philip Moore	Lanzhou University	China
Amitava Mukherjee	Amrita Vishwa Vidyapeetham	India
Mithun Mukherjee	Nanjing University of Information Science and Technology	China
Fri Murdiya	Universitas Riau	Indonesia
Muhammad Murti	Telkom University	Indonesia
M. Sajid Mushtaq	University Paris-Est Créteil (UPEC)	France
Dewi Nasien	Institut Bisnis DanTeknologi Pelita Indonesia	Indonesia

N Nasimuddin	Institute for Infocomm Research	Singapore
Arbi Nasution	Universitas Islam Riau	Indonesia
Tri Nurwati	University of Brawijaya	Indonesia
Okfalisa Okfalisa	University Islamic Suska Riau	Indonesia
Oluwakayode Onireti	University of Glasgow	United Kingdom (Great Britain)
Rosaura Palma- Orozco	Instituto Politécnico Nacional	Mexico
Pranav Paranjpe	IIST	India
Paulo Pinto	Universidade Nova de Lisboa	Portugal
Teguh Prakoso	Diponegoro University	Indonesia
Teddy Purnamirza	Universitas Islam Negeri Sultan Syarif Kasim	Indonesia
Emansa Putra	Politeknik Caltex Riau	Indonesia
Yusnita Rahayu	Universitas Riau	Indonesia
Antonius Rajagukguk	Universitas Riau	Indonesia
Sundari Ramabhotla	Jacksonville University	USA
Ali Rambe	Universitas Sumatera Utara	Indonesia
Luca Reggiani	Politecnico di Milano	Italy
Eric Renault	LIGM, Université Gustave Eiffel, CNRS, ESIEE Paris	France
Andrews Samraj	Mahendra Engineering College	India
Harris Simaremare	Universitas Islam Negri SUSKA Riau	Indonesia
Harry Skianis	University of the Aegean	Greece

Iouliia Skliarova	University of Aveiro	Portugal
Aghus Sofwan	Diponegoro University	Indonesia
Erna Sugesti	Telkom University	Indonesia
Suherman Suherman	Universitas Sumatera Utara	Indonesia
Rika Susanti	Universitas Islam Negeri Sultan Syarif Kasim	Indonesia
Watcharapan Suwansantisuk	King Mongkut's University of Technology Thonburi	Thailand
Robert Szabolcsi	Óbuda University	Hungary
Takuji Tachibana	University of Fukui	Japan
Tengku Azman Tengku Mohd	Politeknik Kuala Terengganu	Malaysia
Kuo-Chang Ting	Minghsin University of Science and Technology, Hsinchu	Taiwan
Antonio Trigo	Instituto Politécnico de Coimbra, ISCAC	Portugal
Febrizal Ujang	Universitas Riau	Indonesia
Jozsef Vasarhelyi	University of Miskolc	Hungary
Matthias Vodel	University of Applied Sciences Mittweida	Germany
Miroslav Voznak	VSB - Technical University of Ostrava	Czech Republic
Alex Wenda	State Islamic University Of Sultan Syarif Kasim Riau	Indonesia
Tin-Yu Wu	National Pingtung University of Science and Technology	Taiwan
Li Xu	Fujian Normal University	China
Indra Yasri	Universitas Riau	Indonesia

Zaini Zaini	Universitas Andalas	Indonesia
Xinming Zhang	University of Science and Technology of China	China
Shuai Zhao	INTEL	USA
Bowen Zhou	Northeastern University	China

Reviewers Additional Reviewers

Mohd Ashraf Ahmad	Universiti Malaysia Pahang	Malaysia
Irsan Taufik Ali	Universitas Riau	Indonesia
Yanti Andriyani	Universitas Riau	Indonesia
Brahim Belmahdi	Univsesity of Abdelmalek Essaadi	Morocco
Dahliyusmanto Dahlan	Universitas Riau	Indonesia
Keh-Kim Kee	UTS	Malaysia
Rahmad Kurniawan	Universitas Riau	Indonesia
Renato R. Maaliw III	Southern Luzon State University	Philippines
Ahmed Badr Mahmood	University of Guelph	Canada
Arbi Haza Nasution	Universitas Islam Riau	Indonesia
Tri Nurwati	University of Brawijaya	Indonesia
Pranav Paranjpe	IIST	India
Emansa Hasri Putra	Politeknik Caltex Riau	Indonesia
Antonius Rajagukguk	Universitas Riau	Indonesia
Andrews Samraj	Mahendra Engineering College	India
Suherman Suherman	Universitas Sumatera Utara	Indonesia
Rika Susanti	Universitas Islam Negeri Sultan Syarif Kasim	Indonesia
Robert Szabolcsi	Óbuda University	Hungary
Tengku Azman Tengku Mohd	Politeknik Kuala Terengganu	Malaysia

Table of Contents 2022 3rd International Conference on Electrical Engineering and Informatics (ICon EEI) Virtual Presentation Track 1 Morning

Applied Symbiotic Organisms Search Algorithm to Solve Economic Emission Dispatch Problems	
Phan Van Hong Thang (Ho Chi Minh City University of Technology & HBT Company, Vietnam), Tran The Tung (Ho Chi Minh	
City University of Technology, Vietnam)	
High Voltage Plasma Convert Coconut Shell Charcoal to Few Layer Wrinkled Graphene (FLwG)	
Fri Murdiya (Universitas Riau, Indonesia), Dede Irawan (Universitas Riau, Indonesia), Amir Hamzah (Universitas Riau, Indonesia),	
Suwitno Suwitno (Universitas Riau, Indonesia), M Rafi Epafras (Electrical Engineering, Indonesia), Firdaus Fakhruddin (Riau	
University, Indonesia)	6
Analysis of PV Module Performance and Electrical Parameters Based on Different Tilt Angles	
Nur Inaara Aiman Binti Fahmi (Universiti Teknologi Malaysia, Malaysia), Nur Hazirah Zainal (Universiti Teknologi Malaysia,	
Malaysia), Dalila Mat Said (Centre of Electrical Energy Systems (CEES), Universiti Teknologi Malaysia, Malaysia), Mohd Adib	
Sarijari (Universiti of Teknologi Malaysia, Malaysia), Mohamed Shahriman Mohamed Yunus (Multimedia University, Malaysia),	
mohd shukri Dolah (Jabatan Kerja Raya, Malaysia), Nasarudin Ahmad (Universiti Teknologi Malaysia, Malaysia)	
The Effect of Lightning Characteristics on the Occurrence of Back Flashover on a 150 kV Transmission Line Using ATPDraw	
Feranita Feranita (Universitas Riau, Indonesia), M Luthfi Andika Jefri (Universitas Riau, Indonesia), Fri Murdiya (Universitas Riau,	
Indonesia)	
Numerical Study on Cavities Shape for the Hydrothermal Performance of Microchannel Heat Sinks with Elliptical Ribs and Secondary Channels	
Sen Rong Liu (South China Normal University, China), Pan Zhongliang (South China Normal University, China)	
Heat Transfer of Spray Dryer Extraction Machine Based on Parametric Design Modeling	
Nurhayati Nurhayati (Universitas Negeri Surabaya, Indonesia), I Made Suartana (Universitas Negeri Surabaya, Indonesia), Fitri	
Adi Iskandarianto (Institut Teknologi Sepuluh Nopember, Indonesia)	

Virtual Presentation Track 2 Morning

Study of Bending Effect of G652 and G657 Optical Fibers on Power Transmission Losses	
George Tongam (Universitas Indonesia, Indonesia), Catur Apriono (Universitas Indonesia, Indonesia)	
Analysis of XG-PON Based FTTH Design for Downstream and Upstream Configurations	
Riko Adisatya (Universitas Indonesia, Indonesia), Yus Natali (Institut Teknologi Telkom Jakarta & Universitas Indonesia, Indonesia), Catur Apriono (Universitas Indonesia, Indonesia)	
Acetylene Black as Counter Electrode on Monolithic Perovskite Solar Cell	
Junivan Sulistianto (Universitas Indonesia, Indonesia & Shizuoka University, Japan), Akinori Konno (Shizuoka University, Japan), Tomy Abuzairi (Universitas Indonesia, Indonesia), Nji Raden Poespawati (Universitas Indonesia, Indonesia)	42
Hybrid Cooperative Spectrum Sensing Algorithm for Cognitive Radio Networks	
Mohammed Alfaqawi (Capgemini Engineering, France)	
A Low Complexity Signal-To-Total Variance Precoding Scheme for Downlink Multi-Stream MU-MIMO Systems	
Aamna Zahid Piracha (AJOU University, Pakistan), Hunaina Farid (University of Bologna, Italy), Kashif Shahzad (NUST College of EME, Pakistan), Muhammad Zeeshan (South East Technological University, Ireland)	53
Comparative Study of PID and FOPID Control Techniques for a Quadcopter	
Shreya Maggo (College of Engineering Pune, India), Sameer Hussain (College of Engineering Pune, India), Amruta Deshpande (College of Engineering Pune, India), Sanjaykumar Patil (College of Engineering Pune, India)	

Virtual Presentation Track 3 Morning

Hybrid Method to Identify Diabetic Retinopathy	
Dian Candra Rini Novitasari (Universitas Islam Negeri Sunan Ampel, Indonesia), Fatmawati Fatmawati (Universi	tas Airlangga
Surabaya, Indonesia), Rimuljo Hendradi (Universitas Airlangga, Indonesia)	
Majority Voting Transfer Learning CNN for Peanut Leaf Types Identification	
Nur Nafi'iyah (Institut Teknologi Sepuluh Nopember, Indonesia), Nende Fatonah (Universitas Esa Unggul, Indo	nesia) 70
Performance Evaluation of Intrusion Detection System Performance for Traffic Anomaly Detection I IP Reputation Rules	Based on Active
Didit Hari Kuncoro Raharjo (Universitas Indonesia, Indonesia), Ade Nurmala (Universitas Indonesia, Indonesia), Pambudi (Universitas Indonesia, Indonesia), Riri Fitri Sari (University of Indonesia, Indonesia)	Rico Dwo 75
Sentiment Analysis for Super Applications in Indonesia: A Case Study of Gov2Go App	
Marzuki Pilliang (Esa Unggul, Indonesia), Habibullah Akbar (Universitas Esa Unggul, Indonesia), Gerry Firmansy University, Indonesia)	rah (Esa Unggul 80
A Comparative Study on Machine Learning-Based Prediction Models for Public Participation Rate Voting	e in an Election
Arif Senja Fitrani (INSTITUT TEKNOLOGI SEPULUH NOVEMBER & Universitas Muhammadiyah Sidoarjo, Indone	sia)
The Impact of Under-Sampling Techniques on Classification Accuracy in Multi-Class Imbalance Dat	ta
Suwanto Sanjaya (Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia), Rahmad Abdillah (Universitas I Sultan Syarif Kasim Riau, Indonesia), Iis Afrianty (Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia)	Islam Negeri
Presenting a Client-Based Cross-Browser Web Privacy Measurement Framework for Automated Detection Research	d Web Tracker
Philip Raschke (Technische Universität Berlin, Germany), Thomas Cory (Technische Universität Berlin, Germany)	98

Virtual Presentation Track 1 Afternoon

Machine Learning Based Techniques for Fault Detection in Power D	istribution Grid: A Review	
Oladapo Tolulope Ibitoye (Afe Babalola University, Nigeria), Moses O. Onib Joseph Dada (Afe Babalola University, Nigeria)	oonoje (Afe Babalola University, Ado Ekiti, Nigeria), 	4
Implementation of Five Types Strategies for Maximum Power Point	Tracking in Photovoltaic System	
Furqan AlDhahir (Middle Technical Universty & Middle Technical University	y, Iraq), Adel Obed (Middle Technical University, 	8
Design and Development of Single Phase Inverter with Regulated O	Dutput Voltage	
Suwitno Suwitno (Universitas Riau, Indonesia), Iswadi Hasyim Rosma (Universitas Riau, Indonesia), Dian Yayan Sukma (Universitas Riau, Indonesia), Fri Murdi	ersitas Riau, Indonesia), Amir Hamzah (Universitas iya (Universitas Riau, Indonesia)11	4
Design and Implementation of SEPIC Converter with MPPT P&O Alg	gorithm plus PI Control Using STM32F4VET6	
Hendrikus Ferdian Mahadewa (Soegijapranata Catholic University, Indones Catholic University, Indonesia)	sia), Leonardus Heru Pratomo (Soegijapranata 12	0
The Small-Scale Portable Power Generator Supports for MSMEs		
Azriyenni Azhari Zakri (Universitas Riau, Indonesia), Dirman Hanafi (Univers	siti Tun Hussein Onn Malaysia, Malaysia & Universitas	
Bung Hatta, Indonesia), Fauzan Ahmad (University of Riau, Indonesia)		6

Virtual Presentation Track 2 Afternoon

IoT-Based Monitoring and Control on Essential Oil Distillation Systems	
Syamsul Syamsul (Politeknik Negeri Lhokseumawe, Indonesia), Suherman Suherman (Lecturer, Indonesia), Sri Yeni Widianti	
(Politeknik Negeri Lhokseumawe, Indonesia)	132
Remotely Operated Rotary Inverted Pendulum System for Online Control Engineering Education	
Ridma Ganganath Sumanasiri (University of Wolverhampton & The Kingdom of Raigam, Sri Lanka), Chathura R. Sumanasiri	
(University of Wolverhampton, Sri Lanka), Buddhika Annasiwaththa (University of Ruhuna Galle, Sri Lanka)	137

Design and Analysis of Multimode Signaling and Crosstalk Harnessed Signaling Technique with FPGA Implementation	
Azniza Abd Aziz (Intel Malaysia, Malaysia), Intan Zainal Abidin (Universiti Sains Malaysia, Malaysia)	143
Arduino Based Vehicle Distance Locator, Accident Alert and Current Location Tracking Using IoT	
Riasat Khan (North South University, Bangladesh & New Mexico State University, USA), Arif Rabbani (Pabna University of	
Science and Technology, Bangladesh), Md Nihal Al Rafi (North South University, Bangladesh), Khandoker Samiul Hoque (BRAC University, Bangladesh)	148
Smart Garden Monstera Adansonii Based on IoT Using DHT11	
Soraya Mustika (Universitas Negeri Malang, Indonesia), Muladi Muladi (State University of Malang & Universitas Negeri	
Malang, Indonesia), Anik Nur Handayani (Universitas Negeri Malang, Indonesia), Muhammad Afnan Habibi (Universitas Negeri	
Malang, Indonesia), Zein Farhan Makarim (State University of Malang, Indonesia), Eko Noerhayati (Universitas Islam Malang, Indonesia)	153
FPGA Based DCO with Fine Control Correlation Calibration Technique	
Abdullah Ibrahim Almasoud (King Saud University & Advanced Electronics Company, Saudi Arabia), Mohamed Abbas (King	
Saud University, Saudi Arabia), Mohammed Abdelmonem Abou ElEla (King Saud University, Egypt), Abdullah Alghaihab (King	
Saud University, Saudi Arabia)	157

Virtual Presentation Track 3 Afternoon

A Method Comparison on Multi-Label Question Classification for Assessment-Based Personalised Scaffolding Adaptive Learning Path	
Yulia Wahyuningsih (Institute Of Technology Sepuluh Nopember & Widyathama Parahita, Indonesia), Arif Djunaidy (Institut	
Teknologi Sepuluh Nopember, Indonesia), Daniel Oranova Siahaan (Institut Sepuluh Nopember, Indonesia)	162
Masked Faces Classification Using Deep Convolutional Neural Network with VGG-16 Architecture	
Oladapo Tolulope Ibitoye (Afe Babalola University, Nigeria), Oluwafunso Oluwole Osaloni (Afe Babalola University, Nigeria, South Africa)	
A Review of Gamification Related to Mental Health Treatment	200
Daniel Fujiono (University of Bina Nusantara, Indonesia), Calvin Arihta (University of Bina Nusantara, Indonesia), Veronica Lee (University of Bina Nusantara, Indonesia)	172
Image Retrieval of Indonesian Batik Clothing Based on Convolutional Neural Network	
Mutia Fadhilla (Universitas Islam Riau, Indonesia), Des Suryani (Universitas Islam Riau, Indonesia), Nesi Syafitri N (Universitas	
Islam Riau, Indonesia), Hendra Gunawan (Universitas Islam Riau, Indonesia)	177
Interactive English Teaching and Learning Based on Mobile Application	
Panji Rachmat Setiawan (Universitas Islam Riau, Indonesia), Arbi Haza Nasution (Universitas Islam Riau, Indonesia), Anggi	
Hanafia (Universitas Islam Riau, Indonesia), Yudhi Arta (Universitas Islam Riau, Indonesia), Evizal Abdul Kadir (Universitas Islam	
Riau, Indonesia), Rizdqi Akbar Ramadhan (Universitas Islam Riau, Indonesia)	181
Image Segmentation of Palm Leaf Pests to Determine Caterpillar Egg Populations Using Marker Watershed	
Ana Yulianti (Universitas Islam Riau, Indonesia), Ause Labellapansa (University of Islam Riau, Indonesia), Hanafia Pertiwi	
(Universitas Islam Riau, Indonesia), Sri Listia Rosa (Universitas Islam Riau, Indonesia), Muhammad Rizki Fadhilah (Universitas	
Islam Riau, Indonesia), Octadino Haryadi (Universitas Islam Riau, Indonesia)	186
Fire Hotspots Mapping and Forecasting in Indonesia Using Deep Learning Algorithm	
Sri Listia Rosa (Universitas Islam Riau, Indonesia), Evizal Abdul Kadir (Universitas Islam Riau, Indonesia), Abdul Syukur (National	
Taiwan University Science and Technology, Taiwan), Hitoshi Irie (Chiba University, Japan), Rizky Wandri (Universitas Islam Riau,	
Indonesia), Muhammad Fikri Evizal (National Taiwan University Science and Technology, Taiwan)	190

Image Retrieval of Indonesian Batik Clothing Based on Convolutional Neural Network

Mutia Fadhilla Teknik Informatika Universitas Islam Riau Indonesia tiafadhilla@eng.uir.ac.id Des Suryani Teknik Informatika Universitas Islam Riau Indonesia des.suryani@eng.uir.ac.id Nesi Syafitri Teknik Informatika Universitas Islam Riau Indonesia nesisyafitri@eng.uir.ac.id

Hendra Gunawan Teknik Informatika Universitas Islam Riau Indonesia hendra@eng.uir.ac.id

Abstract—Indonesian Batik is best-known for unique and distinct pattern. Searching Indonesian Batik clothing images is a challenging problem due to its wide pattern variations. In this paper, proposed image retrieval model of Indonesian Batik clothing image searching based on Convolutional Neural Network (CNN). Autoencoder proposed as CNN model that trained to reconstructed original input batik clothing image. So, the visual features can be extracted from CNN Autoencoder. Based on the experimental results, the proposed method can reach 90.8% in retrieval accuracy, 58.8% in mean average precision, and 61.9% in average recall.

Keywords—Image Retrieval, Indonesian Batik Clothing, Convolutional Neural Network, Computer Vision

I. INTRODUCTION

Indonesia is known as a country that has cultural diversity. One of the cultural heritages in Indonesia is batik. It is a traditional cloth or fabric which is made using wax-resist dyeing technique. Similar fabric could be found in various countries, but Indonesian Batik is probably the well-known and being designated as a Masterpiece of the Oral and Intangible Heritage of Humanity by UNESCO. Where batik has symbolic meaning patterns that represent the identity of the Indonesian people which expresses their creativity and spirituality. In addition, batik cloth is also widely used as the main material in fashion products in Indonesia, such as clothing that is used for daily activities or certain formal occasions.

Nowadays, batik clothing can be purchased easily through e-commerce. But the customers commonly need to input some keywords related to products and it will be time consuming. Furthermore, it is not easy to represent batik clothing which has wide various styles and patterns using only some keywords or captions. Because of these problems, clothing image retrieval recently has become interesting topic on research.

Clothing image retrieval is a technique that used for searching and retrieving relevant images of clothing product based on image visual features. However, the most challenging part of clothing image retrieval is to extract useful visual features from the image. The main reason is batik clothing image has big variations and uniqueness in attributes such as color, pattern, style, and image viewpoint. Besides that, the clothing images also can be differentiated by fine and small detail probably can be seen in different viewpoint.

The computer vision is now widely used in several fields such as robotics, medicine, fashion, etc. Convolutional Neural Networks (CNN) is one of computer vision model that have been succeeded in several vision-related task in artificial intelligence, such as feature extraction, image classification, and image detection such as proposed in [1], [2]. So far, there are some research that are related to batik pattern retrieval. [3] proposed a method for retrieving batik pattern image based on combination of local and global features that were extracted according to the Zernike moments (ZMs). [4] developed content-based batik retrieval using Maximum Run Length (MRL) from Local Binary Pattern. Other existing methods used CNN-based model for recognize batik pattern. [5], [6] proposed CNN model of batik pattern classification. Meanwhile, [7] proposed supervised and unsupervised CNN model to extract image features then KNN searching for batik retrieval. However, most of the research only discuss about image retrieval of batik pattern fabric, almost no research focused on batik clothing image retrieval. Meanwhile, there are many studies related to fashion image retrieval. Some research proposed cross-domain clothing retrieval model, [8] proposed novel model used feature fusion and quadruplet, [9] used triplet embedding. Meanwhile [10] conducted survey on proposed cross-domain model. Others implemented capsule network [11] and multi-task learning CNN model [12] to extract features for retrieval multi-view images. But most of studies focused on general fashion product images.

Based on the problems mentioned above, motivating us to develop a batik clothing image retrieval model. It implements CNN model for extract visual features of images. The visual features of images will be used for measuring similarity between query and images collection in retrieval model. In this study, conducted some experiments that uses different visual features extracted and similarity measurements.

II. PROPOSED METHOD

A. CNN Auto Encoder

The proposed method in this study is illustrated in fig. 1 and fig 2. Fig. 1 shows training step of CNN Networks and

fig. 2 shows testing step in batik clothing image retrieval. In this study, the dataset used is a collection of batik clothing images obtained from several shops that sell batik clothes online in e-commerce such as Shopee or Tokopedia. Since the dataset has no label, CNN-based network used for training phase is Autoencoder network as shown in fig 1. This network model will be trained to reconstruct the images in dataset which consists of two parts i.e., Convolutional Part (Encoder) and Deconvolutional Part (Decoder).

Fig. 1. Autoencoder CNN Network of Proposed Method

Encoder part consist of three convolution layers where each layer uses 32 filters with kernel size 3x3 followed by max-pooling layer. It is trained for obtaining feature maps from convolution layer as representation of input image. Meanwhile, Decoder part will be trained to reconstruct the original input image based on the feature maps that obtain from encoder part. It consists of three up-sampling layers followed by convolution layer that has same filter configuration in encoder part. Autoencoder network is implemented to minimize loss value between input and reconstructed images so the image representative features can be extracted from the model and used in retrieval testing phase.

B. Batik Clothing Image Retrieval

The second part of proposed method is measuring similarity score to get matching or similar batik clothing images as shown in fig 2. Visual features of batik clothing images will be extracted from trained autoencoder network in first phase. In this study, visual features are extracted from the output of convolution and max-pooling layer, namely MP1, MP2, and MP3 as shown in fig 1. The visual features of query image will be compared with visual features of images collection to find relevant batik clothing image. The similarity measurement for comparison uses three functions i.e., Cosine Similarity, Euclidean Distance and Manhattan Distance. After measuring all of similarity between query image and each image in collection of batik clothing images, the similarity or distance score will be sorted or ranked. Score from cosine similarity will be sorted from largest value to smallest. While score from Euclidean and Manhattan Distance will be sorted from the smallest value to biggest.

Then, the top-k matching images can be collected from index information in ranked similarity or distance score.

Cosine Similarity can be calculated using equation (1) as shown below:

$$Cos(X_q, X_i) = \frac{X_q X_i}{\|X_q\| \times \|X_i\|}$$
(1)

where X_q is the visual feature of query image and X_i is visual features of image and X_i is visual features in images collection. The larger value of the cosine similarity, the more similar batik clothing images will be collected. Meanwhile, Euclidean Distance and Manhattan Distance can be calculated using equation (2) and (3) below:

$$Edist(X_q, X_i) = \sqrt{\sum_{i=1}^n (X_q - X_i)^2}$$
(2)

$$Mdist(X_q, X_i) = \sum_{i=1}^{n} |X_q - X_i|$$
(3)

where n is vector size on visual features, X_q and X_i are the visual features of query image and each image in batik clothing images collection. The smaller value of Euclidean or Manhattan Distance, the more similar or matching images will be found.

Fig. 2. Image Retrieval Testing of Proposed Method

C. Performance Measurements

The performance of proposed method is measured with three measurements that related to image retrieval. The measurements are image retrieval accuracy, Mean Average Precision (MAP) and Average Recall (AR). Retrieval accuracy is used to calculate accuracy rate for top-k result in batik clothing image retrieval. It measures how accurate the proposed method can retrieve relevant images at least one image at top-k. Image retrieval accuracy is calculated by equation below:

$$Top_k_acc = \frac{\sum_{n=1}^{N} R_n}{N}$$
(4)

where N is number of query images and R_n is relevant value for image retrieval of each query image which is equaling to 1 if one of the images is in the top-k retrieval is the same batik clothing image as the query image, otherwise is equaling 0.

MAP for image retrieval is the mean of the average precision score of each query:

$$MAP@K = \frac{\sum_{n=1}^{N} AP@K(n)}{N}$$
(5)

Where N is total of query images. AP@K(n) is the average precision at top-k retrieval images for each query image. Average precision is calculated by formulation below:

$$AP@K = \frac{\sum_{k=1}^{K} P(k) \times rel(k)}{M}$$
(6)

Where M is number of matching or relevant batik clothing images in top-k retrieval images, P(k) is the precision score at top-k retrieval images, and rel(k) is an indicator that equaling 1 if product at rank k is a matching batik clothing product, 0 otherwise.

AR is used to calculate the probability that all relevant images are retrieved in top-k retrieval images using the proposed method. AR can be calculated by equation below:

$$AR@K = \frac{\sum_{n=1}^{N} R(k)}{N} \tag{7}$$

where N is the total of query images and R(k) is recall score at top-k retrieval images.

III. EXPERIMENTAL RESULTS

To evaluate the proposed method, image collection in dataset is separated into training and testing images. Testing images consist of 65 batik clothing images which each image has different batik pattern. This data partition is used as query images in proposed method. Meanwhile training images are batik clothing images with different viewpoint corresponding with each testing image as shown in fig 3. It is used as training data in Autoencoder CNN training phase and collection images in image retrieval in proposed method. Autoencoder training phase is conducted with several hyperparameters which are 50 epochs, Adam Optimizer, and Mean Absolute Error loss function.

Testing Images

Training Images

Fig. 3. Examples of Batik Clothing Image Dataset

The results of performance measurement are shown in table I – IV. Table I is result of retrieval accuracy at top-k in each combination of visual feature and similarity function. As shown in table I, the best score is top-50 accuracy with visual feature MP1 and MP3 using Cosine Similarity which score is 90.8%. In addition, the best scores of each top-k are 81.5% accuracy at top-10 using MP2 visual features and Manhattan Distance, 84.6% accuracy at top-20 using MP1 visual feature and Manhattan Distance, 87.7% accuracy at top-30 using MP3

visual feature and Cosine Similarity and MP3 visual feature and Manhattan Distance, then 89.2% accuracy at top-40 using MP1 visual feature and Cosine Similarity then MP3 visual feature and Cosine Similarity.

 TABLE I.
 RETRIVEL ACCURACY OF BATIK CLOTHING IMAGE

Visual	Similarity	Top-k Retrieval Accuracy				
Feature	Function	Top-10	Top-20	Тор-30	Top-40	Top-50
MP1	Cosine	70.8%	80.0%	83.1%	89.2%	90.8%
	Euclidean	70.8%	76.9%	83.1%	83.1%	84.6%
	Manhattan	80.0%	84.6%	86.2%	86.2%	89.2%
MP2	Cosine	73.8%	83.1%	86.2%	87.7%	89.2%
	Euclidean	70.8%	78.5%	83.1%	83.1%	84.6%
	Manhattan	81.5%	83.1%	84.6%	86.2%	89.2%
MP3	Cosine	72.3%	81.5%	87.7%	89.2%	90.8%
	Euclidean	69.2%	81.5%	83.1%	83.1%	86.2%
	Manhattan	80.0%	84.6%	87.7%	87.7%	89.2%

Compared with [7], the proposed method provides better performance at top-16 retrieval accuracy than the model used visual features extracted from unsupervised CNN or auto encoder model (CAE) as shown in table II. But the proposed method can't provide better performance at top-16 retrieval accuracy score comparing with visual features extracted from supervised CNN model. The main reason is that the dataset used in this study does not have label or attributes that can help CNN model learn more information about the image dataset and get better visual features.

TABLE II. COMPARISON OF RETRIEVAL ACCURACY

Mathad / Visual Fastures	Top-16 Retrieval Accuracy			
Wiethou / Visual Features	Euclidean	Manhattan		
CNN [7]	99.38%	99.31%		
CAE [7]	67.37%	63.87%		
Proposed Method				
• MP1	75.38%	80.00%		
 MP2 	76.92%	81.54%		
 MP3 	76.92%	81.54%		

Table III shows Mean Average Precision results of each visual feature and similarity function combination. As shown in table III, the best score of each MAP at top-k is visual features MP2 with Manhattan Similarity. The best score is 58.8% at top-10 retrieval images, following by top-20 with MAP score 55.5%, top-30 with MAP score 54.7%, top-40 with MAP score 54.6%, and top-50 with MAP score 54.7%.

TABLE III. MAP OF BATIK CLOTHING IMAGE RETRIEVAL

Visual	Similarity	Mean Average Precision				
Feature	Function	Top-10	Top-20	Top-30	Top-40	Top-50
MP1	Cosine	35.0%	34.6%	33.5%	33.1%	32.8%
	Euclidean	35.7%	34.6%	33.5%	32.8%	32.7%
	Manhattan	55.8%	53.1%	51.8%	51.8%	51.9%
MP2	Cosine	39.4%	37.2%	37.3%	35.1%	35%
	Euclidean	37.5%	36.5%	35.7%	34.6%	33.8%
	Manhattan	58.8%	55.5%	54.7%	54.6%	54.7%
MP3	Cosine	37.3%	35.8%	35.5%	33.8%	33.0%
	Euclidean	36.1%	35.4%	34.9%	34.2%	32.8%
	Manhattan	54.6%	52.4%	52.2%	50.2%	50.3%

Table IV shows average recall of top-k result of each visual feature and similarity function combination. As shown in table IV, the best score of AR is visual features MP1 with Manhattan Distance and visual features MP2 with Manhattan Distance at top-50 images retrieval. Its score is 61.9%. AR at top-40 has best score that is using MP1 visual features MP1

and Manhattan Distance which has 61% AR score. Meanwhile, AR at top-10, top-20, and top-3 has best score with MP2 visual features and Manhattan Distance as shown in table IV.

TABLE IV. AR OF BATIK CLOTHING IMAGE RETRIEVAL

Visual	Similarity	Average Recall				
Feature	Function	Top-10	Top-20	Тор-30	Top-40	Top-50
MP1	Cosine	36.8%	46%	49.5%	55.9%	59.9%
	Euclidean	35.8%	44.6%	50.8%	54.5%	56.5%
	Manhattan	48.1%	54.9%	60.0%	61.0%	61.9%
MP2	Cosine	37.6%	48.6%	51.7%	55.4%	58.8%
	Euclidean	37.6%	46.7%	51.3%	54.6%	57.1%
	Manhattan	49.4%	56.9%	59.0%	60.0%	61.9%
MP3	Cosine	37.1%	47.7%	52.2%	55.9%	58.8%
	Euclidean	36.5%	47.2%	51.8%	55.1%	58.6%
	Manhattan	47.6%	55.5%	57.5%	60.4%	61.8%

In addition, fig 4 illustrates some results of batik clothing image retrieval using proposed method. The left column is query Image and other columns shows top-10 ranking image retrieval results based on correspondence query image. The red rectangle means the relevant or matching batik clothing product of query image retrieved by proposed method. As shown in figure 4, the second query image is the example of the best result on image retrieval using proposed method. The matching images occurred on the 1st and 2nd images in retrieval results. Meanwhile, the matching images of first query image example are occurred on 6th and 7th image in retrieval results and the matching image of the last example is occurred on 10th image in results.

Fig. 4. Examples of Batik Clothing Image Retrieval Result

IV. CONCLUSIONS

In this paper, image retrieval of Indonesia batik clothing based on convolutional neural network was proposed. Autoencoder model was proposed as convolutional neural network that is trained for extract visual features of batik clothing image used for comparing similarity between query image and dataset collection.

Some experiments by combining different visual feature and similarity function were conducted to measure the performance of proposed method. Based on the results, for batik image retrieval model of proposed method can reach 90.8% in retrieval accuracy at top-50 using MP1+Cosine Similarity, 58.8% in mean average precision at top-10 using MP2+Manhattan Distance, and 61.9% in average recall at top-50 using MP1+Manhattan Distance and MP2+Manhattan Distance. The proposed method needs some improvement for the next study, such as providing more label information of the dataset and implementing other deep neural networks for extracting useful image features.

REFERENCES

- Y. Zhu and S. Newsam, "DenseNet for dense flow," in Proceedings -International Conference on Image Processing, ICIP, 2018, vol. 2017-September. doi: 10.1109/ICIP.2017.8296389.
- [2] M. Tan and Q. v. Le, "EfficientNet: Rethinking model scaling for convolutional neural networks," in 36th International Conference on Machine Learning, ICML 2019, 2019, vol. 2019-June.
- [3] Q. Yuan, S. Xu, and L. Jian, "A new method for retrieving batik shape patterns," J Assoc Inf Sci Technol, vol. 69, no. 4, 2018, doi: 10.1002/asi.23977.
- [4] H. Prasetyo and J. W. Simatupang, "Batik Image Retrieval Using Maximum Run Length LBP and Sine-Cosine Optimizer," 2019. doi: 10.1109/ICSECC.2019.8907190.
- [5] Y. Gultom, A. M. Arymurthy, and R. J. Masikome, "Batik Classification using Deep Convolutional Network Transfer Learning," Jurnal Ilmu Komputer dan Informasi, vol. 11, no. 2, 2018, doi: 10.21609/jiki.v11i2.507.
- [6] Y. Azhar, Moch. C. Mustaqim, and A. E. Minarno, "Ensemble convolutional neural network for robust batik classification," IOP Conf Ser Mater Sci Eng, vol. 1077, no. 1, 2021, doi: 10.1088/1757-899x/1077/1/012053.
- [7] H. Prasetyo and B. A. Putra Akardihas, "Batik image retrieval using convolutional neural network," Telkomnika (Telecommunication Computing Electronics and Control), vol. 17, no. 6, 2019, doi: 10.12928/TELKOMNIKA.v17i6.12701.
- [8] Y. Miao, G. Li, C. Bao, J. Zhang, and J. Wang, "ClothingNet: Cross-Domain Clothing Retrieval with Feature Fusion and Quadruplet Loss," IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.3013631.
- [9] S. Jiang, Y. Wu, and Y. Fu, "Deep bidirectional cross-Triplet embedding for online clothing shopping," ACM Transactions on Multimedia Computing, Communications and Applications, vol. 14, no. 1, 2018, doi: 10.1145/3152114.
- [10] C. Ning, Y. Di, and L. Menglu, "Survey on clothing image retrieval with cross-domain," Complex and Intelligent Systems, 2022, doi: 10.1007/s40747-022-00750-5.
- [11] F. Kinli, B. Ozcan, and F. Kirac, "Fashion image retrieval with capsule networks," 2019. doi: 10.1109/ICCVW.2019.00376.
- [12] M. Fadhilla, J. Y. Lin, W. J. Chen, and G. S. Lin, "Multi-View Clothing Image Searching Based on Deep Neural Network," 2020. doi: 10.1109/ICCE-Taiwan49838.2020.9258235.