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Abstract
A detailed understanding of the drilling fluid rheology and filtration properties is essential to assuring reduced fluid loss 
during the transport process. As per literature review, silica nanoparticle is an exceptional additive to enhance drilling fluid 
rheology and filtration properties enhancement. However, a correlation based on nano-SiO2-water-based drilling fluid that 
can quantify the rheology and filtration properties of nanofluids is not available. Thus, two data-driven machine learning 
approaches are proposed for prediction, i.e. artificial-neural-network and least-square-support-vector-machine (LSSVM). 
Parameters involved for the prediction of shear stress are  SiO2 concentration, temperature, and shear rate, whereas  SiO2 
nanoparticle concentration, temperature, and time are the inputs to simulate filtration volume. A feed-forward multilayer 
perceptron is constructed and optimised using the Levenberg–Marquardt learning algorithm. The parameters for the LSSVM 
are optimised using Couple Simulated Annealing. The performance of each model is evaluated based on several statistical 
parameters. The predicted results achieved R2 (coefficient of determination) value higher than 0.99 and MAE (mean absolute 
error) and MAPE (mean absolute percentage error) value below 7% for both the models. The developed models are further 
validated with experimental data that reveals an excellent agreement between predicted and experimental data.

Keywords Artificial neural network (ANN) · Drilling fluid · Filtration loss · Least square support vector machine 
(LSSVM) · Nanoparticles · Rheology
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�  Regularisation parameter
�  Kernel parameter to be optimised

Acronyms
ANN  Artificial neural network
API  American Petroleum Institute
CSA  Couple Simulated Annealing
FFMLP  Feed-forward multilayer perceptron
FL  Filtration loss
FV  Filtration Volume
GS  Gel strength
HPHT  High pressure high temperature
KKT  Karush–Kuhn–Tucker
LM  Levenberg–Marquardt
LSSVM  Least square support vector machine
MAE  Mean absolute error
MAPE  Mean absolute percentage error
MSE  Mean square error
NP  Nanoparticle(s)
PV  Plastic viscosity
R2  Regression coefficient
RMSE  Root mean square error
SS  Shear Stress
SVM  Support vector machine
WBM  Water-based mud
YP  Yield point

Introduction

The success of oil and gas well drilling operation is highly 
dependent on the selection and design of an appropriate drill-
ing fluid. Generally, the expenditure of drilling fluid in a drill-
ing operation ranges from 5 to 15%, but it may potentially 
cause significant drilling challenges (Smith et al. 2018; Agwu 
et al. 2018). The three main broad categories of drilling flu-
ids are water-based mud (WBM), oil-based mud (OBM) and 
synthetic-based mud (SBM). WBM is commonly preferred 
amongst the other types due to its economic advantage, 
lower toxicity, and lower waste and environment challenges 
(Mahmoud et al. 2016; Smith et al. 2018). Drilling fluid has 
diverse functions in a drilling operation such as circulating 
drill cuttings and acting as the primary barrier for well con-
trol by exerting hydrostatic pressure on the formation. It also 
suspends the drill cuttings during a drilling break, cools and 
lubricates the drill bit, and maintains the wellbore stability 
in uncased section (Agarwal et al. 2011; Alvi et al. 2018).

Rheological properties of drilling fluid are critical to 
achieve an optimum drilling performance as it affects the hole 
cleaning process and rate of penetration in drilling (Gowida 
et al. 2019). Losing the basic required mud rheology such as 
plastic viscosity (PV), yield point (YP), and gel strength (GS) 
may lead to the occurrence of severe drilling complications 

(Abdo and Haneef 2013). Drilling fluid that penetrates the 
permeable formation or the fluid loss will result in an inva-
sion process and the formation of mud cake. It is crucial 
to mitigate an excessive fluid loss into formation as it will 
lead to formation of damage and affect the productivity and 
injectivity of a well (Contreras et al. 2014). Additives such 
as polymers and bentonite clay are commonly added in drill-
ing fluid to function as a rheology modifier and fluid loss 
controller in drilling fluid. However, some weighting material 
and the polymeric additives tend to undergo degradation or 
breakdown at high-temperature condition, and it results in 
varying drilling mud rheology (Agarwal et al. 2011). Accord-
ing to Zakaria et al. (2012), conventional usage of a macro- or 
micro-drilling fluid often failed to reduce the fluid loss due 
to its size and limited functional ability.

Since the emergence of nanotechnology in the past decade, 
there were numerous experimental studies and research on the 
advantages of several nanoparticles on conventional drilling 
fluid. Silica  (SiO2) can be found abundantly in sand or quartz; 
it is one of the most commercialised nanoparticles due to its 
well-known preparation method (Riley et al. 2012). Recent 
research by Keshavarz Moraveji et al. (2020) showed that  SiO2 
nanoparticles had improved the apparent viscosity, plastic vis-
cosity and yield point of drilling mud compared to the base 
fluid. The thermal stability of the drilling fluid is improved 
proven by the less severe reduction in rheological behaviour 
after the hot rolling process in the presence of nanoparticles. 
The filtration loss (FL) of the drilling fluid also reduced with 
the increasing weight fraction of nanoparticles. A flow loop 
experiment conducted by Gbadamosi et al. (2019) using 
 SiO2 nanoparticle water-based drilling fluid demonstrated 
an improvement in borehole cleaning efficiency indicated by 
the increase in lifting efficiency of 13%. The enhancement 
in the drilling fluid rheology has enabled a better suspension 
and transport of cuttings to the surface. Mao et al. (2015) 
found that nanoparticle-assisted drilling fluid can effectively 
plug the micro-pores and micro-cracks through cross-linking 
and bridging. The formation of thin but dense mud cake aids 
to minimise the mud filtration loss as well as improve the 
pressure bearing capability of formation. Nanoparticles with 
ultra-fine sizes minimise the issue of accessing micropores or 
surfaces of the near-wellbore formations (Vryzas et al. 2015). 
According to Mao et al. (2015),  SiO2 in nano-scale exhibit 
high surface energy, rigidity, thermal and dimensional sta-
bility. It can function efficiently and effectively, along with 
the presence of other foreign molecules such as Acrylamide, 
sulfonic acid, Maleic anhydride, and Styren. Table 1 summa-
rises the other applications of nanoparticles in the water-based 
drilling fluid. The effect of  SiO2 on drilling fluids had been 
extensively investigated showing positive results to rheologi-
cal behaviour and filtration properties.

Recently, artificial intelligence (AI) has aroused attention 
and adaptability in the oil and gas industry. Machine learning, 
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as a subset of AI, is defined as a technique that is capable of 
processing multifaceted attributes from a historical database 
to deal with nonlinear problems for prediction and generali-
sation with high efficiency (Bello et al. 2015). As drilling is 
one of the most expensive operations in the industry, AI is 
reported in numerous studies as a proficient solution to reduce 
drilling cost (Bello et al. 2015). Artificial neural network 
(ANN), fuzzy logic, support vector machines (SVM), hybrid 
intelligent system (HIS), case-based reasoning (CBR) are 
some popular implementations in machine learning. Accord-
ing to the review by Agwu et al. (2018), both ANN and SVM 
have been utilised in the prediction of rheological proper-
ties and filtration loss with promising results. However, the 

predictions performed only account for conventional drilling 
fluid without the inclusion of nanoparticles. Artificial neural 
network (ANN) was the first AI tool to be implemented in the 
oil and gas industry, and it is one of the most employed tech-
niques of AI (Popa and Cassidy 2012). Other than the predic-
tion of rheology and filtration loss, ANN has been applied in 
prediction of mud density, lost circulation, mudflow pattern, 
hole cleaning, cutting transport efficiency, settling velocity 
of cuttings and frictional pressure loss (Osman and Aggour 
2003; Ozbayoglu and Ozbayoglu 2007; Al-Azani et al. 2019; 
Alkinani et al. 2020; Alanazi et al. 2022). The feed-forward 
multilayer perceptron (FFMLP) architecture, paired with a 
back-propagation learning algorithm, is the most widely used 

Table 1  Previous studies of the application of nanoparticle in water-based drilling fluid

Author(s) Nanoparticle (NP), average Size Concentration Conclusion

Medhi et al. (2020) Zirconium Oxide  (ZrO2) 27 nm 0–1.0 wt% Increase in NP concentration improved the viscosity, elastic-
ity and thermal stability with lesser filtrate loss

Vargas et al. (2020) SiO210–20 nm 0–0.1 wt% Aside from the improvement in rheology, the addition of NP 
results in a reduction in filtration loss and mudcake thick-
ness after the thermal ageing process

Aramendiz and Imqam (2020) SiO215–20 nm 0–1.0 wt% Increase in PV, YP and GS with  SiO2 NP up to 0.5 wt%. 
Further increase in concentration showed a reduction in 
YP and increase in FL, probably due to aggregation of NP

Graphene (GNP) 15–20 nm 0–1.0 wt% Increase in PV, YP and GS up to 0.2 wt% GNP. Further 
increase in GNP concentration above 0.4 wt% resulted in a 
little impact on GS and FL

Maiti et al. (2021) SiO2 0–0.5 wt% Positive effects shown in rheological properties, excellent 
imbibition effects on hydrate formation

Al-Yasiri and Wen (2019)] Graphite–aluminium oxide (Gr-
Al2O3) 198 nm (Gr), 309 nm 
 (Al2O3)

0–0.8 wt% Increase in PV and GS with shear-thinning behaviour 
captured. Thermal conductivity increased with increasing 
concentration

Alvi et al. (2018) Boron Nitride (BN) 250 nm 0.05–2.0 g No significant impact on FL and YP. Addition of 1.0 g BN 
showed most reduction in friction coefficient. Further 
increase in weightage increased friction coefficient

Fe2O350nm 0.05–2.0 g Addition of 0.05 g  Fe2O3 showed the most reduction in 
friction coefficient. YP increased, and no noticeable effect 
on FL

Cheraghian et al. (2018) SiO210nm 0.1–1.5 wt% Increase in NP concentration improved the PV, YP, GS and 
reduced the thickness of mudcake

Sadegh Hassani et al. (2016) SiO2 0.5 wt% Increase in NP concentration improved the PV, AV, YP, and 
thermal stability

Kang et al. (2016) SiO2150nm 0–10.0 wt% Addition of  SiO2 increased in PV and YP and a lower fluid 
loss. Higher NP concentration induced better physical 
plugging effect on the shale formation, which signifi-
cantly decreased the imbibition amount, swelling rate and 
Young’s modulus of the formation

Ghanbari et al. (2016) SiO210nm 0–0.5 wt% Colloidal form of  SiO2 increased the PV and YP of the drill-
ing fluid with lower FL. The colloidal form of  SiO2 proven 
to be more superior than the powder form due to a better 
dispersion technique

Cai et al. (2012) SiO25–20 nm 10 wt% NP with size ranges from 7 to 15 nm are effective at plug-
ging the pore throats of the shale formation. The penetra-
tion of the NP reduces the shale permeability, thereby 
minimised the interaction between shale and water-based 
fluid
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ANN. Most networks comprised of one hidden layer adopting 
Levenberg–Marquardt (LM) as the optimisation method for 
weights and biases. The application of LM algorithm in ANN 
has demonstrated to outperform other algorithms such as 
Scaled Conjugate Gradient and Resilient Back-Propagation 
due to its fast and stable convergence (Sapna 2012; Du and 
Stephanus 2018; Yu and Wilamowski 2018; Liu et al. 2020). 
According to Yu and Wilamowski (2018), this algorithm is 
more robust and efficient in training small and medium-sized 
problem. It is noticeable that most of the predictions involve 
a conventional drilling fluid, and there are limited studies 
that involve the application of nanoparticles in drilling fluid. 
Table 2 shows the application of ANN in drilling fluids.

The application of LSSVM in the oil and gas industry 
is less prominent compared to the long-established ANN. 
Least square support vector machine (LSSVM), proposed by 
Suykens and Vandewalle in 1999, is an improvised machine 
learning approach of SVM that was developed by Cortes and 
Vapnik in 1995 (Chen et al. 2020). The SVM incorporates the 
idea of mapping nonlinear inputs from the primal to a higher 
dimensional space through a kernel function. The primary 
advantage of SVM compared to an ANN is that the computa-
tion process does not require hidden nodes, and it has fewer 
parameters to be optimised (Ghorbani et al. 2020). It has a 
better generalisation and a lower tendency to overfit. The 
quadratic programming algorithm in SVM involves variables 
subjected to linear constraints, commonly results in a more 
rapid convergence than ANN. However, SVM has a major 
downside due to its model complexity and required con-
strained optimisation programming that may cause a longer 
computation time (Wang and Hu 2005). The introduction of 
LSSVM has increased the efficiency and accuracy of a tradi-
tional SVM by using a sum-squared-error cost function which 
is a form of a linear system known as Karush–Kuhn–Tucker 
(KKT) instead of inequality constraints which is quadratic 
(Wang and Hu 2005; Asadi et al. 2021). Similar to SVM, 
LSSVM transforms the data from its defined dimension to 
a higher dimensional space to convert a nonlinear problem 
to be approximately linear (Ma et al. 2018). Radial basis 
function, also known as Gaussian, is the most capable and 
widely used kernel among the other kernels such as linear 
and polynomial. (Wang and Hu 2005; Ma et al. 2018; Uma 
Maheswari and Umamaheswari 2020). Table 3 summarises 
the studies of LSSVM in drilling operations.

Drilling fluid is a non-Newtonian fluid that violates the 
Newton’s Law of Viscosity where the shear stress is not pro-
portional to the shear rate applied. The rheology of a non-
Newtonian drilling fluid can be described by the Bingham 
Plastic, Herschel–Bulkley and Power Law fluid model. The 
most widely used model, Bingham Plastic is a two-parameters 
rheological model. Based on a Bingham Plastic fluid shear 
stress versus shear rate graph, the intersection point depicts 
the yield point, and the slope represents the plastic viscosity 

of a fluid. The pioneer analytical model to estimate the vis-
cosity of mixtures or composites was developed by Einstein 
(1906). Modified models were proposed based on the Einstein 
model namely Brinkman model, Batchelor model and Graham 
model, mainly considering the interfacial layer on the nano-
particle (Udawattha et al. 2019). A correlation to determine 
nanofluid viscosity based on Brownian motion of nanoparticle 
developed in 2009, but it was contended to be negligible in 
2016 (Masoumi et al. 2009; Moratis 2016). Researchers later 
started to discover the impact of temperature, size of particle, 
and concentration on viscosity through experiments (Udawat-
tha et al. 2019). However, no exact correlation can provide the 
viscosity of nanofluids over a wide range of concentration. 
The static filtration behaviour of drilling fluid is determined 
through a static filter press test by applying a differential pres-
sure at elevated temperature to simulate the borehole condi-
tion according to API specifications.

Mud formulations are often determined from labora-
tory experiments through trial and errors depending on 
the experience of the mud engineer to achieve the desir-
able properties (Shadravan et al. 2015). Laboratory experi-
ments are time-consuming and expensive to conduct over 
a wide range of controlling parameters as it involves the 
preparation of base fluid and nanoparticles, dispersion and 
stabilisation of the nanoparticles in the solvent to achieve 
a favourable result (Shahsavar et al. 2019). Therefore, the 
incorporation of machine learning is essential in developing 
a system that utilises the available data and trends from past 
cases which will provide better insight for the mud engineer 
to increase efficiency and reduces the cost of experiment-
ing. This research aimed to develop two machine learning 
models using ANN and LSSVM to predict the shear stress 
and filtration volume of  SiO2 nanoparticle water-based drill-
ing fluid. The network performance for each prediction is 
evaluated by statistical parameters such as the coefficient of 
determination (R2), root mean square error (RMSE), mean 
absolute percentage error (MAPE) and mean absolute error 
(MAE). The trend of predicted shear stress and filtration 
loss at varying input parameters is validated with the experi-
mental trendline to gain intuition on the dependency of the 
outputs on the controlling factors.

Methodology

Data acquisition and normalisation

The foundation of a machine learning model is established 
based on historical data. To date, there are an appreciable 
number of experimental studies to examine the effect of  SiO2 
nanoparticles on the properties of water-based drilling fluid 
with different variables. Figure 1 is the overall flowchart of 
the methodology adopted in this research work.
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The input parameters utilised for the prediction of shear 
stress include shear rate, nanoparticle concentration and 
temperature. One hundred fifty-six (156) data points are 
gathered from three (3) published experimental results 

(Vryzas et  al. 2015; Mahmoud et  al. 2016, 2018). The 
WBM formulation for all the studies contained seven (7) 
wt% bentonite prepared according to the requirement of API 
Specifications 13A. The nano-silica used in all studies had 

Table 3  Previous studies of LSSVM applications in oil and gas industry

Author(s) Type of prediction Type of optimisation Input Output Results

Asadi et al. (2021) Dynamic viscosity of 
MWCNT-MgO/oil 
hybrid nanofluid

Bayesian Optimisation Temperature, NP con-
centration, shear rate

Dynamic viscosity of 
oil hybrid nanofluid

MSE = 1.161
R2 = 0.999

Golsefatan and Shah-
bazi (2021)

Filtration volume of 
 SiO2 NP in WBM

Couple Simulated 
Annealing (CSA)

Temperature, time, NP 
concentration, KCl 
salt concentration

Filtration volume R2 = 0.994

Ahmadi (2016) Drilling fluid density 
of OBM, WBM and 
SBM

Genetic Algorithm Pressure, temperature Mud density MSE = 0.000145
R2 = 0.999

Meybodi et al. (2015) Viscosity of  Al2O3, 
 TiO2,  SiO2, CuO 
water-based nano-
fluids

CSA NP type, size, concen-
tration, temperature

Viscosity of nanofluid RMSE = 3.7084
AARE = 2.144%
R2 = 0.9979

Tanoumand et al. 
(2015)

Viscosity of Diluted 
Heavy Oil in Presence 
of Kerosene

CSA Temperature, kerosene 
mass fraction

Viscosity RMSE = 516.33
R2 = 0.999
MAPE = 1.89%

Frictional pressure loss 
in a 3-phase flow 
(drilling fluid, air, 
cuttings)

CSA In situ flow rate of each 
phase, rate of penetra-
tion, pipe rotation, 
hole inclination

Frictional pressure loss RMSE = 0.018
R2 = 0.9862
AARD = 3.459%

Milad Arabloo (2014) Frictional pressure loss 
for multiphase flow in 
inclined annuli

CSA Gas and liquid super-
ficial velocity, pipe 
rotation speed, rate 
of penetration, hole 
inclination

Frictional pressure loss R2 = 0.9862
AARD = 3.459
RMSE = 0.018

Fig. 1  General workflow to develop the machine learning models
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an average size of 12 nm. The experiment was conducted at 
varying nanoparticles concentration from 0 to 2.5 wt% and 
temperature from 78 °F to 200 °F at atmospheric pressure. 
The shear stress of the drilling fluid was measured at shear 
rates ranges in 4  s−1 to 1200  s−1.

Two hundred fifty-four (254) data points comprised of 
nanoparticle concentration, temperature and time from 
another published literature have contributed as the inputs 
for the prediction of filtration loss (Parizad et al. 2018). The 
average grain size for the  SiO2 nanoparticles used in this 
research range from 10 to 15 nm. The filtration loss of  SiO2 
nanoparticle drilling fluid was measured by conducting API 
filtration test at a varying concentration from 0 to 7.5 wt% 
and temperature from 77 °F to 199.4 °F at a fixed differential 
pressure of 100 psig. The filtration volume was recorded at 
a different interval within 30 min. Tables 4 and 5 are the 
statistical descriptions of the datasets for the prediction of 
shear stress and filtration volume, respectively.

All data parameters are normalised based on the mini-
mum and maximum value according to Eq. (1). Data nor-
malisation is a good practice prior to training to adjust the 
data distribution so that the mean of all data points is close 
to zero (Razi et al. 2013; Liu et al. 2020). Normalised data 
can increase the efficiency of training and speed up the net-
work convergence. The illustrations of data distribution for 
prediction of shear stress and filtration loss after normalisa-
tion are shown in Fig. 2 and Fig. 3, respectively.

The data points marked beyond the minimum and maxi-
mum line indicate the outliers. Generally, the filtration loss 
datasets have a better quality than shear stress as there were 
ten (10) outliers out of 156 data of experimental shear stress 
values. For the experimental of filtration loss, there were 
only two (2) outliers out of 254 data points.

(1)x
�

n
=

x−xmin

xmax−xmin

Table 4  Statistical description 
of databank for prediction of 
shear stress

Parameter Minimum Maximum Mean Standard deviation

Nanoparticle Concentration (wt%) 0 2.5 0.996 0.841
Temperature (°F) 78 200 136.448 33.564
Shear rate (1/s) 4.81 1027.47 312.054 338.362
Shear Stress (lbf/100ft2) 0 200 312.054 14.758

Table 5  Statistical description 
of databank for prediction of 
filtration volume

Parameter Minimum Maximum Mean Standard deviation

Nanoparticle Concentration (wt%) 0 7.5 3.257 2.738
Temperature (°F) 77 199 134.189 45.887
Time (s) 2.52 1801.90 583.775 555.786
Filtration Volume (ml) 1.679 30.204 10.053 5.717

Fig. 2  Distribution of normalised data for prediction of shear stress

Fig. 3  Distribution of normalised data for prediction of filtration loss
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Artificial neural network (ANN)

Every artificial neuron comprises multiplication, summa-
tion and activation function represented by the mathematical 
model in Eq. 2. Multiple artificial neurons must be combined 
to harvest the capability of an ANN completely. There are 
several possible ways to connect the neurons, and the termi-
nology to describe the interconnection of neurons is known 
as topology or architecture. A multilayer feed-forward ANN 
architecture where information generally flows in a forward 
direction from input to output is employed in this research. 
The activation function for the input layer and hidden layers 
follows the nonlinear function, whereas the linear activa-
tion function is selected for the output layer to assure the 
outcome to be in the acceptable range. Tansig (Hyperbolic 
tangent sigmoid function) is employed as an activation 
function for input and hidden layer, and Purelin (Linear 

transfer function) is used as an activation function for the 
output layer. Figure 4 and Fig. 5 illustrate the architecture 
of ANN for the prediction of shear stress and filtration loss, 
respectively.

where y is the output, x is the input, w is the weight, b is the 
bias, i is the data index, and n is the total number of data 
points. The initial weight of the ANN model is selected ran-
domly in the range of 

�
−1√
in
,

1√
in

�
 , where ‘in’ is the total input 

to a neuron.
ANN model may consist of single or multiple hidden lay-

ers depending on the complexity of the problem and opti-
misation process. The presence of hidden layers with neu-
rons provides an extrasynaptic connection and dimension of 

(2)y = F

�
n∑
i=0

wi ⋅ xi + b

�

Fig. 4  ANN architecture for 
prediction of shear stress

Fig. 5  ANN architecture for 
prediction of filtration volume
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neural interactions (Cohen 1994). A trial-and-error approach 
by manipulating the number of hidden layers and neurons is 
adopted to finalise a topology best suited for the predictions. 
The loss/error function is set to the root mean square error 
(RMSE). The RMSE depicts the error in the new developed 
model by indicating the deviation between actual data and 
predicted data. This error is used to evaluate and compare the 
different ANN architecture with varying neurons and hidden 
layer to determine the best topology. An optimal number of 
neurons in the hidden layers is vital to avoid underfitting or 
overfitting due to excessive or insufficient neurons. A back-
propagation learning algorithm Levenberg–Marquardt is used 
to optimise the weights and biases. The entire model is estab-
lished using a simulation tool, MATLAB (R2020a).

The proportion of the training, validation, and testing vec-
tors for the construction of ANN to predict shear stress and 
filtration volume is 70:15:15 and 80:10:10, respectively. The 
validation datasets act as the stopping criteria of a training 
process. The network training will halt if the performance of 
the validation samples failed to improve or remains for six 
(6) consecutive epochs in a row. Mean square error (MSE) 
is the indicator of the improvement in the prediction.

Least square support vector machine (LSSVM)

The LSSVM network has a simpler architecture as it involves 
fewer tuning parameters and no hidden nodes involved com-
pared to ANN. According to Asadi et al. (2021), the linear 
form of the input and output vectors in an LSSVM model 
can be generally represented by Eq. 3 where � is the map-
ping of inputs, Xi to a higher dimension. The weight, W and 
bias, b are determined from the cost function in Eq. 4 in 
which a regularisation parameter, gamma (γ), is involved. 
A final form of LSSVM is shown in Eq. 5 which K features 
the kernel trick to be applied in the LSSVM model. Radial 
basis function will be the kernel trick in this research, and it 
is formulated in Eq. 6, where sigma ( �) is the kernel param-
eter to be optimised.

The proportion of training for the testing dataset in the 
LSSVM model to predict shear stress and filtration volume 

(3)yi = wT
⋅ �

(
yi
)
+ b

(4)CostFunction =
1

2
wTw +

�

2

n∑
i=1

e2
i

(5)yi =
n∑
i=1

aiK
�
xi ⋅ xj

�
+ b

(6)K
(
xi.xj

)
= exp

[
−
|xi−xj|2
2�2

]

has a ratio of 80:20 and 70:30, respectively. The tuning 
parameters, which includes the kernel (σ2) and regularisa-
tion (γ) parameter, are optimised by the Couple Simulated 
Annealing (CSA) algorithm. CSA is a modified technique 
from simulated annealing (SA) that exhibits a higher conver-
gence speed and accuracy (Dashti et al. 2020; Ghorbani et al. 
2020). The best-optimised parameters are finalised after an 
iterative process of training, testing and performance evalua-
tion. Figure 6 and Fig. 7 exhibit the LSSVM architecture for 
prediction of shear stress and filtration volume, respectively.

Model performance evaluation

The statistical parameters used to evaluate the performance 
or accuracy of the network are the coefficient of determina-
tion (R2), root mean square error (RMSE) and mean absolute 
percentage error (MAPE) and mean absolute error (MAE). 
These values are computed for all the predicted output from 
training, validation and testing. R2 measures how close 
the outputs are fitted to the target values. RMSE, MAPE 
and MAE depict the difference between the experimental 
and predicted values. R2 value close to 1 or a low value of 
RMSE, MAPE and MAE indicates a favourable prediction 
result. R2, RMSE, MAPE and MAE are expressed math-
ematically as Eq. (7) to (10), respectively, where, yA

i
 is the 

original used data and yp
i
 is the predicted data.

Results and discussion

Prediction of shear stress

Artificial neural network (ANN)

Twenty (20) iterations were performed by manipulating the 
number of the hidden layer(s) from 1 to 2 and the number of 
hidden node(s) from 1 to 50. The network configuration with 
the lowest overall RMSE is the optimum network architec-
ture, and its topology will be selected for further prediction. 
Figure 8 plots the RMSE of the predicted training, validation 

(7)R2 = 1 −
∑i=n

i=1 (y
A
i
−yP

i )
2

∑i=n

i=1 (y
Actual
i

−y)
2
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Fig. 6  LSSVM architecture for prediction of shear stress

Fig. 7  LSSVM architecture for prediction of filtration volume

and testing outputs obtained from the best iteration. Based 
on the plots, the increase in neurons does not guarantee an 
increase in accuracy as weight and biases are continually 
changing in every run. Table 6 quantifies the RMSE and R2 
of the best quantity of hidden neuron(s) using 1 and 2 hidden 
layer(s). The overall RMSE and R2 values are averaged from 
the RMSE and R2 values of training, validation and testing 
vectors. A well-tuned model should be capable of yielding 
high accuracy for the prediction of all the training, validation 
and testing vectors without jeopardising the accuracy of one 
another. Based on Table 6, one (1) hidden layer generally 

performed better than the two (2) hidden layers networks as 
it has a lower RMSE and higher R2 values. The best perfor-
mance is achieved with one (1) hidden layer consisting of 
18 hidden nodes with an overall RMSE of 2.0235 lbf/ft2 and 
R2 of 0.9924. Therefore, a topology of 3–18-1 is selected for 
the prediction of shear stress.

The weights and biases of every neuron optimised by LM 
algorithm are extracted from the finalised network configu-
rations for further training, validation and testing process. 
Figure 9 shows the MSE at every epoch for the prediction 
of shear stress. Epoch is the measure of how many times 
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the training vectors are passed back from the output layer to 
update the weights and biases. The best result for the valida-
tion dataset is achieved at zeroth epoch with the lowest MSE 
of 0.24453 lbf/ft2. Since there is no noticeable improvement 
for six (6) consecutive epochs, the stopping criterion is trig-
gered, and the training cycle is ceased. Based on Fig. 9, MSE 
for all the train, validation and test vectors stabilises after the 

fourth epoch, this is where the network found the optimal 
solution for the weights and biases.

Figure 10 shows the parity plots of the predicted out-
puts versus actual shear stress. The training, validation and 
testing R2 values are 0.993, 0.998 and 0.999, respectively. 
The coefficient of determination of both test and validation 

Fig. 8  RMSE of ANN for prediction of shear stress

Table 6  Statistics of ANN predicted shear stress for 1 and 2 hidden 
layers

Prediction of shear stress

Hidden Layer 1 2

Iteration 15 16
Hidden Neurons 18 11
RMSE (Training), lbf/ft2 0.8931 0.7885
RMSE (Validation), lbf/ft2 1.3780 1.6145
RMSE (Testing), lbf/ft2 3.7993 4.6384
R2 (Training) 0.9983 0.9984
R2 (Validation) 0.9930 0.9935
R2 (Testing) 0.9860 0.9737
Overall RMSE, lbf/ft2 2.0235 2.3471
Overall R2 0.9924 0.9885

Fig. 9  MSE at different epochs of ANN for prediction of shear stress



1042 Journal of Petroleum Exploration and Production Technology (2023) 13:1031–1052

1 3

vectors exceeds 0.995, although training data sets yield a 
slightly lower value. The R2 infers that the network has an 
excellent generalisation to the new testing data points and 
does not overfit. The calculated RMSE based on the pre-
dicted and experimental outputs from training, validation, 
testing is 2.029 lbf/ft2, 0.495 lbf/ft2, and 0.466 lbf/ft2.

A graphical plot of the error distributions is presented 
in Fig. 11 to demonstrate the error in the prediction of the 
developed ANN model. Based on the plot, the maximum 
relative error between the predicted and actual shear stress 
ranges from about − 40 to 30%.

Least square support vector machine (LSSVM)

Twenty (20) iterations with 100 runs each were performed to 
determine the radial basis function kernel parameter (σ) and 
regularisation parameter (γ). These parameters are initial-
ised randomly and optimised by CSA. The best performance 
from each iteration is ranked based on the lowest RMSE, and 
the results are plotted in Fig. 12. Based on the figure, the 
16th iteration yields the lowest overall RMSE with a value 
of 1.452 lbf/ft2. The kernel and the regularisation parameters 

are acquired from the optimal iteration with the values of 
1.5706e + 05 and 13.5046.

Fig. 10  Parity plots of ANN for prediction of shear stress: a Overall Data b Training Data c Validation Data d Testing Data

Fig. 11  Relative error of ANN for prediction of shear stress



1043Journal of Petroleum Exploration and Production Technology (2023) 13:1031–1052 

1 3

The RMSE of prediction of shear stress for training and 
testing datasets is 1.696 lbf/ft2 and 1.209 lbf/ft2. Figure 13 
(a–c) shows the parity plots for the training and testing vec-
tors of prediction of filtration volume with R2 of 0.994 and 
0.995, respectively. The R2 values, which are very close to 
1.0, demonstrate the capability of LSSVM to predict the 
shear stress accurately. The reasonably low RMSE and high 
R2 of testing datasets proved the model has a low tendency 
to overfit the training vectors. The relative error is plotted in 
Fig. 13 (d). The predicted output deviates with a maximum 
relative error from − 18.2 to 26.8%.

Prediction of filtration volume

Artificial neural network (ANN)

The methodology to determine the architecture for predic-
tion of filtration loss is similar to the approach in prediction 
of shear stress. Figure 14 shows the plot of the lowest RMSE 
generated from 1 to 50 neurons from ANN comprised of 
1 and 2 hidden layers. It can be observed that one (1) hid-
den layer network generally outperforms two (2) hidden 

Fig. 12  RMSE of LSSVM for prediction of shear stress

Fig. 13  Parity plots of LSSVM for prediction of shear stress: a Overall Data b Training Data c Testing Data; d Relative error of LSSVM for pre-
diction of shear stress
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layers networks for the majority number of hidden nodes. 
As referred to Table 7, the network with (1) hidden layer 
and 24 hidden nodes yields the best prediction results with 
RMSE of 0.2103 mL and R2 of 0.9993. Therefore, the final 
network architecture of ANN for prediction of filtration vol-
ume is determined to be 3–24-1.

The best validation performance is achieved with MSE 
of 0.04844 mL at epoch 15, as observed from Fig.  15. 
The RMSE computed based on the predicted outputs is 
0.115 mL, 0.220 mL and 0.195 mL for the training, valida-
tion and testing datasets. As compared to the prediction of 
shear stress, the network for the prediction of filtration vol-
ume consumed more computation steps as the curves flatten 
after 18 epochs. The trendline of MSE before the tenth epoch 
indicates the network is prone to underfit as the MSE of the 
training vector is relatively high compared to the MSE after 
the fifteenth epoch.

Figure 16 shows the parity plots for different data envi-
ronments. The predicted outputs are mostly overlying with 
the designated slope at R2 = 1; this indicates that the pre-
diction is highly accurate. The R2 values for all the train-
ing, validation and testing are 0.9998, 0.9994 and 0.9993. 

According to Fig. 17, the relative errors of predicted output 
for filtration loss are relatively lower compared to the pre-
diction of the shear rate as the maximum relative error lies 
between − 12.7 and 23.5%.

Table 7  Statistics of ANN predicted filtration volume for 1 and 2 hid-
den layers

Prediction of filtration 
volume

Hidden layer 1 2

Iteration 19 17
Hidden neuron 24 21
RMSE (Training), mL 0.0759 0.0555
RMSE (Validation), mL 0.2544 0.2995
RMSE (Testing), mL 0.3006 0.5352
R2 (Training) 0.9999 1
R2 (Validation) 0.9991 0.9979
R2 (Testing) 0.9989 0.9968
Average RMSE, mL 0.2103 0.2967
Average R2 0.9993 0.9982

Fig. 14  RMSE of ANN for prediction of filtration volume
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Least square support vector machine (LSSVM‑FV)

The approach to select the kernel parameters in the pre-
diction of shear stress is adopted in this section. Figure 18 
shows that the 7th iteration yields the lowest RMSE with a 
value of 0.231 ml. The kernel and regularisation parameters 
at this iteration are 1.2484e + 08 and 66.8216.

The computed RMSE values from the prediction of filtra-
tion volume using LSSVM are 0.2309 mL and 0.2308 mL 
for training and testing vectors. The R2 values are 0.9992 
and 0.9991 for the training and testing, respectively. The 
low RMSE and high R2 obtained for all vectors demonstrate 
the capability of LSSVM with a low tendency to overfit or 
underfit in the training process. Lastly, the percentage of 
relative error for each predicted output corresponding to 
the actual value is calculated and plotted in the following 
figure. The relative error of the predicted filtration loss lies 
between − 8.1 and 38.6%, as shown in Fig. 19.Fig. 15  MSE at different epochs of ANN for prediction of filtration 

volume

Fig. 16  Parity plots of ANN for prediction of filtration volume: a Overall Data b Training Data c Validation Data d Testing Data
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Fig. 17  Relative error of ANN for prediction of filtration volume

Fig. 18  RMSE of LSSVM for prediction of filtration volume

Analysis of outlier effect

Effect of outlier on the developed model is determined by 
analysing the William’s plot. It is a graphical representa-
tion of standardised residuals (R) and leverage value. The 
leverage value variation in these plots is used to describe 
the outlier impact on model. Leverage values are defined as 
the data with extreme value of the predictor dataset (x). It is 
represented mathematically as Eq. (11).

(11)Hi = xT
i

(
XTX

)−1
xi

where,  Hi is the hat matrix (also known as projection 
matrix),  xi is the selected datapoint from the descriptive 
vector and X is the matrix from the training data descrip-
tor values. The William’s plot of all the developed models 
is presented in Fig. 20. Grubbs critical T value is used to 
separate the outlier from the valid data points on y-axis. 
It can be calculated using Eq. (12). The Grubbs critical T 
value for shear stress data is 3.91 and 4.05 for filtration vol-
ume data. The normalised leverage value is used in Fig. 20. 
Hence, the average of leverage is 1. Therefore, the leverage 
limit is arbitrarily selected the double of leverage average 
that is the value of 2 on x-axis. The leverage limit is used 
to separate high leverage value from the dataset. In Fig. 20, 
a square area is formed using Grubbs critical T value and 
leverage limit. This square area is known as applicability 
domain. The developed models are deemed a statistically 
valid model when most of the data are in this domain. As 
illustrated in this figure, majority of the datapoints are spot-
ted in the applicability domain area which indicates that the 
models developed using ANN and LSSVM for shear stress 
and filtration volume prediction are reliable.

where, G is the Grubbs critical T value, (n-3) is the degree 
of freedom and α/(2n) represents the significance level.

Comparison of ANN and LSSVM

Both applications of ANN and LSSVM showed acceptable 
and accurate results in predicting the shear stress and filtra-
tion loss of  SiO2 nanoparticles water-based drilling fluid. 
Table 8 and Table 9 summarise the RMSE, R2, MAE and 
MAPE of the developed model. Simulated results for all 
models achieved overall R2 of minimum 0.990 with MAE 
and MAPE of not higher than 7%. Figure 21 illustrates 
the statistical parameters of ANN and LSSVM for further 
comparison.

Based on Table 8, the regression coefficient of ANN 
and LSSVM in the prediction of shear stress is 0.9937 and 
0.9941, whereas the RMSE is 1.7235 lbf/ft2 and 1.6003 lbf/
ft2, respectively. LSSVM model slightly outperforms ANN 
in predicting shear stress in terms of a higher R2 and lower 
RMSE and MAPE. The R2 of LSSVM is 0.04% higher than 
ANN, whereas the RMSE is 7.1% lower than ANN. Accord-
ing to Table 9, both models achieved an ideal prediction of 
filtration loss with R2 of higher than 0.999. The comparison 
showed that the R2 of ANN in the prediction of filtration 
volume is 0.05% higher than LSSVM, and RMSE is 33.7% 
lower than LSSVM. Hence, the prediction of ANN is more 
precise than LSSVM in predicting filtration loss.

(12)G =
(n−1)√

n

�
(t�∕(2n),n−3)

2

n−3+(t�∕(2n),n−3)
2
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Fig. 19  Parity plots of LSSVM for prediction of filtration volume: a Overall Data b Training Data c Testing Data; d Relative error of LSSVM 
for prediction of filtration volume

Based on the analysis, both machine learning models are 
equally competent and capable of predicting the required 
parameters with high precision and accuracy. The accuracy 
of both machine learning models in predicting the filtration 
volume is generally higher than shear stress as indicated by 
all the statistics and the relative error distribution plot. One 
of the possible reasons could be due to a larger quantity of 
datasets available for the training.

Validation of the predicted outputs

The predicted output from the machine learning model with 
the best performance is plotted along with the corresponding 
experimental values to validate the trend of the predicted 
output. For the prediction of shear stress, predicted values 
from LSSVM is utilised in Fig. 22 as LSSVM performs 
better than the ANN. Figure 21 shows the rheo-grams of 
the  SiO2 nanoparticle WBM at 78°F and 140°F at varying 
nanoparticles concentration. Shear-thinning behaviour can 
be observed from both experimental and predicted trendlines 

at all concentration of  SiO2. The magnitude or gradient of 
shear-thinning is more noticeable and significant at a higher 
 SiO2 nanoparticle concentration. This behaviour is favour-
able for a drilling fluid as low viscosity is preferred at a high 
shear rate to circulate the drilling fluid and cuttings. High 
viscosity at a low shear rate may ease the suspension of the 
drill cuttings during a drilling break.

The predicted filtration volume at 77 °F and 199 °F with a 
concentration ranging from 0 to 7.5 wt% is shown in Fig. 23. 
The predicted output from ANN is utilised in the plot as it 
has the best performance. The trend of both predicted and 
experimental output increases logarithmically with time, 
and filtration loss decreases with the increasing concentra-
tion of nanoparticles. The reduction in filtration loss can be 
justified by the nano-sized particles that can clog the pore 
throats on the filter paper compared to conventional drilling 
fluid particles.
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Fig. 20  William’s plots of ANN and LSSVM for prediction of shear stress (SS) and filtration volume (FV)

Table 8  Statistical results for prediction of shear stress

Prediction Shear stress

Methodology ANN LSSVM

Statistical parameters R2 RMSE (lbf/ft2) MAE (%) MAPE (%) R2 RMSE (lbf/ft2) MAE (%) MAPE (%)

Training 0.9930 2.0289 0.9286 6.1656 0.9940 1.6960 0.7899 4.3606
Validation 0.9981 0.4945 0.38174 4.5062 N/A N/A N/A N/A
Testing 0.9992 0.4663 0.3061 2.7802 0.9951 1.2090 0.8297 6.1919
Overall 0.9937 1.7235 0.7562 5.4218 0.9941 1.6003 0.8047 5.0382

Table 9  Statistical results for prediction of filtration volume

Prediction Filtration volume

Methodology ANN LSSVM

Statistical parameters R2 RMSE (mL) MAE (%) MAPE (%) R2 RMSE (mL) MAE (%) MAPE (%)

Training 0.9998 0.1148 0.0514 0.9787 0.9992 0.2309 0.0909 1.9623
Validation 0.9994 0.2201 0.1655 2.9432 N/A N/A N/A N/A
Testing 0.9993 0.1954 0.1470 2.4904 0.9991 0.2308 0.16839 2.9586
Overall 0.9997 0.1108 0.1099 1.1256 0.9992 0.1673 0.1020 2.0609
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Fig. 21  Comparison of statisti-
cal parameters

Fig. 22  Predicted and experimental rheo-gram. a 78 °F (b) 140 °F

Conclusions

Prediction of shear stress and filtration loss of  SiO2 nano-
particles water-based drilling fluid are accomplished by two 
machine learning-based approaches, i.e. ANN and LSSVM. 
The developed models demonstrate a well generalisation 
and a low tendency in overfitting. The predicted results for 

both models achieved R2 of higher than 0.99 and both MAE 
and MAPE not exceeding 7%. The RMSE for the predicted 
shear stress and filtration volume is lower than 1.8 lbf/ft2, 
and 0.2 mL, respectively. The following conclusions are 
deduced based on the predictive performance of developed 
ML models.
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1. The assuring performances proved that both ANN and 
LSSVM are capable of predicting the output based on 
the precision of provided inputs.

2. It is found that LSSVM outperforms the ANN in the 
prediction of shear stress, whereas for the prediction of 
filtration volume, ANN performs better than the another. 
There is no definite conclusion of which machine learn-
ing approach is more superior in this research.

3. A shear-thinning behaviour is observed in the rheo-gram 
and a noticeable logarithmic increment of filtration loss 
with time.

4. The developed machine learning models are compre-
hensive and efficient in predicting the shear stress and 
filtration volume of a  SiO2 nanoparticles water-based 
drilling fluid.
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