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Abstract This study applied a Machine Learning Algorithm based on Random Forest Regression

for eliminating the insignificant parameter and evaluating the correlation between each parameter

and response parameter on the LSWI process. 1000 experimental designs of LSWI parameters,

Reservoir & Injection Temperature, Volume Injection, Formation Water Composition, and Injec-

tion Water Composition were build using Design of Experiment on CMOST from Computer

Modeling Group with Recovery Factor as the response parameter. Finally, the sensitivity analysis

is carried out on Random Forest Regressor based on the decrease in the mean squared error (MSE).

The Random Forest Algorithm methods respectively recognized Injection SO42- Composition, For-

mation Water SO42-Composition dan Volume Injection as the top three of most significant param-

eters. Five variations of the random state value are applied and the hyperparameters of Random

Forest also optimized. Both training and test data, the R2 score respectively are consistently over

0.9 for 5 variations of the random state used. The information about the significant operation

parameter of the LSWI process presented in this article is potential bearing the novel to the indus-

try. The insight into those parameters is predicted to be useful to encourage the LSWI implemen-

tation on Carbonate Reservoir.
� 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/

4.0/).
1. Introduction

There are many numbers of energy types in the world, but the
main source of energy used comes from fossil energy, crude oil

and natural gas. In line with the level of thirst for energy which
is predicted to increase by 50% in 2050, oil and gas and other
types of fossil energy will still contribute at least 50% of the
total energy needed in the future [26]. Hence, it is very impor-

tant to find and study methods that can streamline the acqui-
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sition/production of fossil energy, especially crude oil and nat-
ural gas.

Low Salinity Water Injection (LSWI) had been considered

as a potential method to be used as an Enhanced Oil Recovery
method after Morrow and his friends, [25,38,39,43], concluded
based on their research that oil recovery depends on the com-

position of the injection water. The popularity of LSWI in
increasing oil recovery is growing rapidly due to its efficiency
in moving oil from light to medium gravity crude oil, easily

injected into formations, the abundant source of water and
its affordability and low capital and operating costs [5].

Adegbite et al. [1] expressed that the carbonate reservoir is
estimated to cover up to 60% of the world’s total oil and gas

reserves. Regrettably, only a single reported LSWI field project
on the carbonate reservoir. The success of LSWI in increasing
oil recovery in carbonate reservoirs has been widely described

in many publications. Unfortunately, this success is still on a
laboratory scale and only one LSWI pilot test was recorded
up to this time which reported by Yousef and his colleagues

in 2012 [31]. The existed challenges in the carbonate reservoir
such as high level of heterogeneity, the high energy bond
between the carbonate surface and polar component crude

oil and the fact that almost 90% of carbonate rocks are in neu-
tral or oil-wet condition resulting in a very low primary recov-
ery (30% on average), driving to the difficulty of analyzing the
effect of LSWI on this type of reservoir [16,27].

Based on the conducted laboratory experiments, several
operating parameters affected oil recovery during the LSWI
process. Adegbite et al. [1], Al-Attar et al. [2], Awolayo et al.

[12], Derkani et al. [16], Egbe et al. (2020), R. Gupta et al.
[20], Høgnesen et al. [24], Strand et al. [37], Webb et al. [41]
and Y. Zhang & Sarma [48] concluded from their laboratory

experiment that sulfate ion is an active ion in changing the wet-
tability of carbonate rock during LSWI process which led to
the increase of oil recovery. Beside, Chandrasekhar et al.

[14], Shehata et al. [35] and P. Zhang et al. [47] proposed by
tuning the concentration of Ca2+, Mg2+ and SO42- ions in
injection water will lead to the variation of oil recovery since
those ions are the potential determining ions (PDI) which sig-

nificantly contribute to the wettability alteration of carbonate
rock. It is also described that during the LSWI proses, temper-
ature plays an important role in the chemical reaction that

occurs between the injection water and carbonate surface
resulting in the addition of oil recovery [1,24,37,45,48]. Lastly,
Al-Attar et al. [2], Al-Harrasi et al. [3], Alameri et al. [6],

Hidayat et al. [23], Nasralla et al. [34], Shehata et al. [35], Tet-
teh et al. [40] Yousef et al. [44–46] stated that lowering the
salinity of water injection until a certain value and tuning its
composition will generate more oil recovery along LSWI

process.
The sensitivity study of LSWI on carbonate reservoir has

been discussed in several previous works. In 2014, Han &

Lee conducted a study on sensitivity analysis on the combina-
tion of EOR between LSWI and Polymer Flooding. This
experiment showed a large increment in oil recovery occurred

when the slug size of the LSWI was increased and the highest
oil yield was obtained when the viscosity of the polymer flood-
ing was increased 2–3 times than the oil viscosity. In this study,

salt concentration was analyzed to bear a less significant role in
increasing oil recovery.

Al-Shalabi et al. [4] conducted a sensitivity analysis of 7
LSWI parameters using the Design of Experiment (DoE)
method. It was found that the most significant parameters of
LSWI in oil recovery were LSWI Slug Size, followed by Reser-
voir Heterogeneity, and Injected Water Salinity. The other

parameters such as Kv/Kh, Sorw, and Seawater Slug Size
recorded as insignificant parameters to gain the oil recovery.

Zeinijahromi et al (2015) conducted a sensitivity analysis to

see the effect of the decrease in relative permeability caused by
LSWI on the increase in oil recovery in the Zichebashskoe
field. This study indicates that the increase in oil recovery is

greatly sensitive to the decrease in water relative permeability
during LSWI.

Davarpanah & Mirshekari [15] executed the sensitivity
analysis of reservoir and rock properties during the LSWI pro-

cess. The authors concluded that rock compressibility possess
less effect on Total Field Oil Production (FOPT), Total Field
Gas Production (FGPT), Field Pressure Ratio (FPR) and

Field Gas Oil Ratio (FGOR). Moreover, porosity and Net
to Gross reported have an important role in the generating
of FOPT, FGPT, FGOR.

Recently, Egbe et al. [17] conducted a sensitivity analysis of
several LSWI parameters on a carbonate reservoir using 3–6
simulation scenarios. This study recorded that higher oil recov-

ery was obtained when injecting LSWI at the secondary stage
rather than the tertiary stage. Also, he concluded that the
injection rate and temperature are important in the LSWI pro-
cess and must be included in the modelling process.

Machine learning has gained popularity in data science
since the rapid development of computing technology. It can
easily deal with the larger and complex dataset [29]. Among

the variety of machine learning method, the Random Forest
Algorithm is one of the most powerful methods in analyzing
the data and has been implemented in many research works.

It is happened due to random forest algorithm can provide
high and stable predictive results, has minimal effort in tuning
its parameters and can be applied both for classification and

regression cases [30].
Random Forest is an advanced decision tree technique that

can be used for classification or regression. It is also part of the
ensemble learner family [13]). A decision tree is an easy to use

method because of its clear structure. Unfortunately, the high
variance makes it unstable [29]. Random forest emerges to deal
with this issue. Random Forest is a process of creating many

different decision trees with different sets of samples at each
node and averaging the score of each decision trees as its final
score to get a more accurate result [29]. Random is robust than

decision tree to outliers and in unbalanced datasets, scalable
and capable for handling non-linear trends in the dataset.
Also, it decreases bias and overfitting in shuffling the training
data using multiples trees [7]. This method has a great perfor-

mance due to applying the bootstrapping technique; random
forest can provide high accuracy prediction and reduce the
error value, variance and prevent overfitting of the predictive

model [22,30]. Unlike multivariate regression and neural net-
work, random forest is highly interpretable. It does not require
any specific data distribution and variable normalization with

different range because the random forest needs not rescaled,
transformed or modified [8,29]. The Random Forest Algo-
rithm has been quite successful, cited from the many citations

that indicate its practical significance in the academic or indus-
trial application [30]. Hence, in this article, the concept of ran-
dom forest is carried out to perform the sensitivity parameter
of the LSWI method.



Table 1 Fluid and rock properties [18].

Properties Value Unit

Saturated Pressure 740 psi

GOR 247 scf/stb

FVF 1.18 bbl/stb

API 40

Permeability 40 md

Porosity 25 %

Reservoir Temperature 186 F

Reservoir Pressure 2515 psi

Table 2 Formation and low salinity water concentration [45].

Ions Formation water

(ppm)

Lowsal water

(ppm)

Sodium (Na+) 59,491 915

Calcium (Ca2+) 19,040 32.5

Magnesium (Mg2+) 2,439 105.5

Sulphate (SO4)
2- 350 214.5

Chloride (Cl)- 132,060 1610

Carbonate (CO3)
2- 0 0

Bicarbonate

(HCO3)
-

354 6

Total 213,734 2883.5

Table 3 Crude oil compo-

sition [18].

Component Mole Fraction

CO2 0.01183

N2 0.00161

C1 0.11541

C2 0.06006

C3 0.06476

i-C4 0.02217

n-C4 0.04755

i-C5 0.03282

n-C5 0.03703

C6 0.06514

C7 0.08420

C8 0.09894

C9 0.07838

. . . . . .

C30+ 0.06452
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The use of random forest in doing features importance/sensi-
tivity study in the oil and gas industry has been described in sev-
eral publications.Aulia et al. [11] conducted a sensitivity analysis

to see the significant parameters that affect oil recovery and
water cut. The authors used the Latin Hypercube Monte Carlo
(LHMC) to conduct sampling of 100 simulation runs. They also

compare the One-Variable-At-A Time Perturbation (OVAT)
and theRandomForest (RF)method in conducting a sensitivity
study. RF calculates the Mean of Decrease of Accuracy and

Mean of Decrease of Gini Index to see the significant parameter
(sensitivity). The results of this study indicated that OVAT and
RF have the same tendency to provide a list of parameters that
most influence the response variables. Also, the changing of

the number of trees on the RF can affect the sensitivity chart.
In 2017, Aulia and his co-workers conducted a sensitivity

study using 10 parameters. The authors used two methods to

perform sensitivity analysis, which is One-Parameter-At-a-
Time (OPAT), a standard sensitivity analysis method that is
often used in the upstream industry and the combination of

Random Forest (RF) - Plackett-Burman (PB). Based on the
result, it was concluded that RF-PB has better performance
in performing sensitivity analysis compared to OPAT.

Liang & Zhao [29] conducted a EUR prediction for Uncon-
ventional Hydrocarbons in the Eagle Ford Formation. In this
analysis, the authors use production/petrophysical/engineering
data with 25 variables over 1069 wells in the Eagle Ford Shale

Formation which will be analyzed using Multivariate Regres-
sion and Random Forest Algorithm. The author also investi-
gates the most important parameter in estimating EUR. Based

on the analysis, it found that Random Forest gives a better per-
formance with a prediction on oil and gas EUR model of R2

60.69% and 73.73% while the multivariate regression shows

R2 of 49%.
Liao et al. [30] conducted a prediction and parameters opti-

mization for tight oil formation located in the Cardium Tight

Oil Formation, Canada. In this analysis, the authors use 50
parameters from 1286 wells. The author also compares the per-
formance of several Machine Learning techniques such as
XGBoost, SVM, Neural Network, Random Forest, K-Mean

and Gaussian Regression to determine the related parameters
and their error values. It is concluded that Random Forest has
the lowest error generalization rate to achieve the highest per-

formance and its prediction score is greater than 90%.
To optimize the implementation of LSWI concerning

achieve an increase in economic oil recovery, it is crucial to

eliminate the uncertainties and identifying the most significant
LSWI parameters to improve the recovery oil [4]. Therefore,
using a random forest algorithm, in this study the author will
build a predictive model which define the oil recovery as the

response variable and analyze the sensitivity of LSWI param-
eters focusing on the ionic composition of injection and forma-
tion water such as Ca2+, Mg2+, SO4

2-, Na+ & Cl-. Besides, this

study also included the other LSWI parameters, are Reservoir
Temperature, Injection Temperature and Injection Volume,
which considered important by several published research

mentioned previously.

2. Methodology

To the best of our knowledge, there is only a single reported
LSWI field implementation on carbonate reservoir. Therefore,
in this study, 1000 design of experiment were established using
CMOST from CMG to reach the need of a dataset that will be
analyzed by machine learning random forest algorithm.

1. Simulation data and design of experiment
a. Hydrocarbon component & rock properties

The hydrocarbon component and rock properties data used
in this study is referred to in the article by Yousef et al. [45]

and Esene et al. [18]. The data are described in Table 1, 2
and 3. Table 4 shows the Design of Experiment of LSWI
parameter.



Table 4 Design of experiment LSWI Parameter.

Variable Name Code/Symbol Minimum Maximum

Aqueous Ca Composition (ppm) Aqu_Ca 1396.16 45375.07

Aqueous Cl Composition (ppm) Aqu_Cl 24537.55 318854.98

Aqueous Mg Composition (ppm) Aqu_Mg 178.05 5786.54

Aqueous Na Composition (ppm) Aqu_Na 4909.61 159562.44

Aqueous SO4 Composition (ppm) Aqu_SO4 47.05 1529.06

Injection Ca Composition (ppm) Inj_Ca 2.5 81.25

Injection Cl Composition (ppm) Inj_Cl 123.65 4018.52

Injection Mg Composition (ppm) Inj_Mg 8.11 263.72

Injection Na Composition (ppm) Inj_Na 70.32 2285.41

Injection SO4 Composition (ppm) Inj_SO4 16.5 536.13

Volume Injection (bbl/day) Inj_Stw 132.85 332.12

Injection Temperature (F) Inj_Temp 139.5 232.5

Reservoir Temperature (F) Tres 139.5 232.5

Table 5 Reservoir characteristic model.

Parameter Value Comment

Grid Number 1445 3D (17 17 5)

Pattern Area 1 Acre

Thickness (k) 50 ft

Grid size di = 17*13 ft

dj = 17*13
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b. Reservoir model

This study is conducted using a conceptual reservoir model
(See Fig. 1) with the characteristic of model can be seen in

Table 5.

2. Random forest hyperparameter

Similar to decision trees, the Random Forest algorithm has
several hyperparameters that must be detuned to obtain an

optimized prediction score. The hyperparameters are:

� Maximum trees: The maximum number of trees established

during the random forest modelling process.
� Maximum depth: The maximum number of layers/branches
from the root node to the deepest leaf node.

� Minimum sample leaf: The minimum number of samples

required in the leaf node before splitting the node.
Fig. 1 Reserv
� Maximum features: The maximum number of features used

in the splitting node process.

The following Table 6 describes the minimum and maxi-

mum value of random forest hyperparameters used in the tun-
ing process along building the predictive model.
oir model.



Table 6 Hyperparameter of random forest algorithm

Hyper

Parameter

Code/Symbol Minimum Maximum

Maximum

Tree

’algo__n_estimators’ 100 200

Maximum

Depth

’algo__max_depth’ 20 80

Maximum

Features

’algo__max_features’ 0.1 1

Minimum

Sample Leaf

’algo__min_samples_leaf’ 1 20
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3. Result and discussion

Random Forest Supervised Machine Learning Algorithm has

been widely implemented in the petroleum industry and has
proven to own good accuracy and performance in predictive
modelling and feature importance [7–11,29,30,33,42]. Compar-

ison has been made with several popular machine learning
algorithms such as Multivariate Linear Regression, Neural
Network, Support Vector Regressor, and K-Nearest Neigh-
bors and another ensemble method, Decision tree, alongside

with Random Forest. It is intended to evaluate the perfor-
mance of each algorithm in building a proxy model using the
collected data. Among the algorithms used, the Random For-

est has the most superior performance, as shown in Fig. 2.
Random Forest outweighs other machine learning algo-

rithms in every parameter, bar training score from KNN.

However, for KNN, the overfitting does happen as the valida-
tion and test score were under 0.6. Nevertheless, this result
adds more confidence to use the Random Forest Regressor
in investigating the features importance or a sensitivity study

of the LSWI implementation on carbonate reservoirs.
Features importance for the Random Forest Algorithm is

managed by exploring the decrease in Mean Squared Error

(MSE) over 13 independent LSWI parameters. By using these
independent parameters, Reservoir Temperature, Injection
Temperature, Volume / Slug Injection, Injection Water Com-
Fig. 2 Random Forest Compa
position (Ca2+, Mg2+, SO4
2-, Cl-, Na+) and Formation Water

Composition (Ca2+, Mg2+, SO4
2-, Cl-, Na+), and the Recovery

Factor as the response parameter, 1000 Design of Experiments

(DoE) based on Response Surface of Methodology were car-
ried out using CMOST from the Computer Modeling Group
(CMG) to create a dataset that will be analyzed using the

machine learning method. In this study, the hyperparameters
of Random Forest was also detuned to obtain the best predic-
tive model.

In performing feature importance using Machine Learning
Random Forest, first, a predictive model is built with the
LSWI parameter as the input features and the Recovery Fac-
tor as the output feature. A simple Exploratory Data Analysis

(EDA) is conducted by looking at the correlation between the
independent variables. It is intended to ensure that there is no
multicollinearity in the dataset. Multicollinearity is a condition

to allow the correlation between the independent variables. In
this case, the independent variables are not only correlated
with the dependent variable but also correlated to each inde-

pendent variables. This phenomena can lead to an increase
in standard errors and can cause certain variable statistically
insignificant [29]. Fig. 3 indicates that there is no multi-

collinearity on the dataset.
The predictive model is established by tuning the hyperpa-

rameter of the Random Forest Algorithm and splitting the
dataset into 3 parts, are training data, validation data and test-

ing data, to find the best model and prevent overfitting (I.
[19,22,28]. Random Forest is an algorithm that bearing many
hyperparameters [7,13]. Hence, in this study, the Randomized

Search Cross-Validation technique is implemented to reduce
the computation time when running the model. Randomized
Search Cross-Validation is an alternative method to Grid

Search Cross-Validation in performing hyperparameter opti-
mization and suits for algorithms that have many hyperparam-
eters such as Random Forest [28]. This method allowing us to

define the number of iterations/combinations of hyperparame-
ter that will be applied to the model. In this study, 50 itera-
tions/combination of hyperparameter is run on the model.
Moreover, 3 K-fold cross-validations and 5 scenarios of ran-

dom state value are employed to analyze the consistency of
rison with Other Algorithms.



Fig. 3 Features correlation.
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random forest performance in building the model. Finally,
there are 150 fitting models which will be built for each ran-

dom state as showing in Fig. 4.
Table 7 showed the best prediction score over 50 hyperpa-

rameters combinations. This result indicates that the random

forest algorithm is successful in constructing the model due
to the consistency of its performance to reach about 0.9 R2

for all the variation of the random state value.
Fig. 5 & Fig. 6 presented the Plot Actual VS Prediction and

the residual plot for evaluating the quality of the model. The
R2 in both the training data and the test data reach a score
Fig. 4 Running model u
of 0.9. As indicated from those figures, the oil recovery (re-
sponse variable) and loss data are symmetrically distributed

near the regression line. This evaluation concluded that ran-
dom forest has built a predictive model well, thus the analysis
of feature importance can be confidently performed.

In the Random Forest Algorithm, Features importance is
done by calculating the decrease in the Mean Squared Error
(MSE) of the predictive. The more important a parameter,
the greater its role in decrease the MSE [8,29]. Based on

Fig. 7 & Table 8, Random Forest acknowledges the parame-
ters of Injection SO4

2- Concentration, Formation SO4
2- Concen-
sing 42 random state.



Table 7 Best hyperparameter combination

No Random State Hyper Parameter Random Forest Evaluation Score

Max_depth Max_features Min_samples_leaf n_estimators R2 MSE MAE

1 1 59 0.73726 2 187 0.88018 1.98363 0.71818

2 10 79 0.33474 1 147 0.93169 1.1955 0.64327

3 20 78 0.26786 3 119 0.91827 1.19444 0.68542

4 30 59 0.73726 2 187 0.93467 1.27832 0.68324

5 42 79 0.84987 3 177 0.9056 1.54809 0.71875

Fig. 5 Actual vs prediction plot.

Fig. 6 Residual plot..
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tration and Slug/Volume Injection, as the three most impor-
tant parameters to reduce the Mean Squared Error of the

model. Accordingly, these three parameters are the most sig-
nificant parameter to produce oil during the LSWI process
on the Carbonate Reservoir. Moreover, The other 7 parame-

ters do not appear to have a significant role in oil recovery dur-
ing the LSWI process.

The results obtained from this study are consistent with the

conclusion from many published research. During the LSWI
process on the carbonate reservoir, sulfate ions both in injec-
tion and formation water play an important role in oil recov-

ery [1,2,12,16,17,20,24,37,41,48]. The injection sulfate ion is
the main contributor to the wettability alteration of carbonate
rock during the LSWI process. Meanwhile, the formation of

sulfate ion has a significant role in the initial wetting state of
the carbonate reservoir [1,17]. It was also found that volume
injection is one of the most significant parameters to obtain

the oil. These results are linear with several other research pub-



Fig. 7 Significant parameter of LSWI.

Table 8 Top 10 significant parameter LSWI.

Ranking Features Importance

1 Inj_SO4 0.567807

2 Aqu_SO4 0.19615

3 InjectorStw 0.171791

4 Aqu_Cl 0.009924

5 Aqu_Na 0.008429

6 Inj_Mg 0.008187

7 Tres 0.007599

8 Inj_Cl 0.006555

9 Inj_Temp 0.005575

10 Inj_Ca 0.005309
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lications [4,17,21,32]. This parameter is explainable since the
LSWI is an advanced technique of waterflooding where ions

in water are controlled to increase oil recovery. LSWI
improves both physical and chemical displacement. The phys-
ical displacement rapidly occurred since the water injection

began whereas the chemical displacement began after the ions
in brine reacts with the rock surface [36]. Therefore, the slug/
volume injection is an important parameter in produce oil dur-

ing the LSWI process.
In this study, neither injection nor reservoir temperature

appears to have a significant effect in oil recovery. Both param-
eters only have an important value of 0.005575 & 0.007599,

respectively. This result contradicts the conclusions presented
by several authors in their article which they proposed that tem-
perature is a significant parameter in the LSWI process to gain

the oil [1,24,37,45,48]. A recent study fromEgbe et al. [17] found
that temperature have a crucial role in ion-exchange equivalent
fraction Mg2+ and Ca2+, mineral behavior and pH. They

explained that the temperature did not play a significant role
in increase the oil recovery where there is very little change in
the oil recovery as the injection temperature changes. It happens
because the oil recovery is primarily a function of the relative

permeability interpolation, and no change was analyzed on it
during the temperature changes.

Lastly, an attractive result found in this study is the effect

of Na+, Cl-, Ca2+ and Mg2+ ion in oil recovery. Chan-
drasekhar et al. [14], Shehata et al. [35] and P. Zhang et al.
[47] concluded that the concentrations of Ca2+, Mg2+ and
SO4

2- are the potential determining ions (PDI) which have a

major influence on changes in rock wettability and leading to
increasing the oil recovery. However, it was found that the
concentrations of Ca2+ and Mg2+ both in the formation of

water and injection water did not have a significant effect in
oil recovery during the LSWI process. Adegbite et al. [1] pro-
posed that the Ca2+ and Mg2+ are not bearing a significant

role in wettability alteration. They explained the wettability
alteration that occurs in the carbonate reservoir during the
LSWI process is mainly caused by the concentration of SO4

2-

ions. Awolayo et al. [12] also stated that both Cl- and Na+

are inactive ions and do not have a significant effect to gener-
ate oil recovery. Awolayo et al. [12] affirmed that the extrac-
tion of oil recovery during LSWI is a consequent of

wettability alteration which is mainly contributed by the sul-
phate ion concentration.

4. Conclusion

This study applied a Machine Learning Algorithm based on
Random Forest Regression for eliminating the insignificant

parameter and evaluating the correlation between each parame-
ter and response parameter on the LSWI process. The parame-
ters of Injection SO4

2- concentration, Formation SO4
2-

concentration and Volume Injection are found as the top three
influenced parameters to gain the oil recovery during the LSWI
process on the carbonate reservoir with each importance value is

0.567807, 0.19615, 0.171791. Whereas, the other 10 parameters
observed in this study did not show any significant effect in oil
recovery. The information about the significant operation
parameter of the LSWI process has potential to be useful to

encourage the LSWI implementation on Carbonate Reservoir.
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