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A Generalized Constraint Approach to Bilingual Dictionary

Induction for Low-Resource Language Families

ARBI HAZA NASUTION, Kyoto University and Universitas Islam Riau
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The lack or absence of parallel and comparable corpora makes bilingual lexicon extraction a difficult task for
low-resource languages. The pivot language and cognate recognition approaches have been proven useful
for inducing bilingual lexicons for such languages. We propose constraint-based bilingual lexicon induction
for closely related languages by extending constraints from the recent pivot-based induction technique and
further enablingmultiple symmetry assumption cycle to reachmanymore cognates in the transgraph.We fur-
ther identify cognate synonyms to obtain many-to-many translation pairs. This article utilizes four datasets:
one Austronesian low-resource language and three Indo-European high-resource languages. We use three
constraint-based methods from our previous work, the Inverse Consultation method and translation pairs
generated from Cartesian product of input dictionaries as baselines. We evaluate our result using the met-
rics of precision, recall, and F-score. Our customizable approach allows the user to conduct cross validation
to predict the optimal hyperparameters (cognate threshold and cognate synonym threshold) with various
combination of heuristics and number of symmetry assumption cycles to gain the highest F-score. Our pro-
posed methods have statistically significant improvement of precision and F-score compared to our previous
constraint-basedmethods. The results show that our method demonstrates the potential to complement other
bilingual dictionary creation methods like word alignment models using parallel corpora for high-resource
languages while well handling low-resource languages.
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1 INTRODUCTION

Machine-readable bilingual dictionaries are very useful for information retrieval and natural lan-
guage processing research but are usually unavailable for low-resource languages. Previous work
on high-resource languages showed the effectiveness of parallel corpora [3, 8] and comparable
corpora [7, 21] in inducing bilingual lexicons. Bilingual lexicon extraction is highly problematic
for low-resource languages due to the paucity or outright omission of parallel and comparable
corpora. The approaches of pivot language [31] and cognate recognition [15] have been proven
useful in inducing bilingual lexicons for low-resource languages. Closely related languages share
cognates that share most of the semantic or meaning of the lexicons [13]. Some linguistics studies
[9, 34] show that the percentage of shared cognates, either related directly or via a synonym, con-
stitutes a highly accurate linguistic distance measure based on mutual intelligibility, that is, the
ability of speakers of one language to understand the other language. The higher the percentage
of shared cognates between the languages, the lower the linguistic distance, the higher is the level
of mutual intelligibility.
We recently introduced the promising approach of treating pivot-based bilingual lexicon induc-

tion for low-resource languages as an optimization problem [20] with cognate pair coexistence
probability as a sole heuristic in the symmetry constraint. In this article, we propose generalized
constraint-based bilingual lexicon induction for closely related languages by setting two steps
to obtaining translation pair results. First, we identify one-to-one cognates by incorporating more
constraints and heuristics to improve the quality of the translation result.We then identify the cog-
nates’ synonyms to obtain many-to-many translation pairs. In each step, we can obtain more cog-
nate and cognate synonym pair candidates by iterating the n-cycle symmetry assumption until all
possible translation pair candidates have been reached. We address the following research goals:

• Creating many-to-many translation pairs between closely related languages: Recognize cog-
nates and cognate synonyms from direct and indirect connectivities via pivot word(s) by
iterating the symmetry assumption cycle to improve the quality and quantity of the trans-
lation pair results.

• Evaluating the generalized method performance: We apply the Inverse Consultation method
[31] and naive translation pairs generation from the Cartesian product of input dictionaries
to all of our datasets and compare the results with those of our generalized methods using
precision, recall, and F-score. We also conduct experiments with our previous constraint-
based methods [20] with the same datasets and further conduct student’s paired t-tests to
show that our proposed methods have statistically significant improvement of precision
and F-score. We conduct cross validation to predict the optimal hyperparameters (cognate
threshold and cognate synonym threshold) to gain the highest F-score.

The rest of this article is organized as follows: In Section 2, we will briefly discuss related re-
search on bilingual dictionary induction. Section 3 discusses closely related languages and exist-
ing methods in comparative linguistics. Section 4 details our strategy of recognizing cognate and
cognate synonyms, core component for our proposal, which is described in Section 5. Section 6
introduces our experiment and the results. Finally, Section 7 concludes this article.

2 BILINGUAL DICTIONARY INDUCTION

An intermediate/pivot language approach has been applied in machine translation [32] and ser-
vice computing [12] researches. The first work on bilingual lexicon induction to create bilingual
dictionary between language A and language C via pivot language B is Inverse Consultation (IC)
[31] by utilizing the structure of input dictionaries to measure the closeness of word meanings
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Fig. 1. One-to-one constraint approach to pivot-based bilingual dictionary induction.

and then use the results to prune erroneous translation pair candidates. The IC approach identi-
fies equivalent candidates of language A words in language C by consulting dictionary A-B and
dictionary B-C. These equivalent candidates will be looked up and compared in the inverse dictio-
nary C-A. To analyze the method used to filter wrong translation pair candidates induced via the
pivot-based approach, [24] explored distributional similarity measure (DS) in addition to IC. The
analysis showed that IC depends on significant lexical variants in the dictionaries for each mean-
ing in the pivot language, while DS depends on distributions or contexts across two corpora of the
different languages. Their analysis also showed that the combination of IC and DS outperformed
each used individually.
The pivot-based approach is very suitable for low-resource languages, especially when dictio-

naries are the only language resource required. Unfortunately, for some low-resource languages,
it is often difficult to find machine-readable inverse dictionaries and corpora to filter the wrong
translation pair candidates. Thus, we consider that the combination of IC and DSmethods does not
suit low-resource languages. To overcome this limitation, our team [37] proposed to treat pivot-
based bilingual lexicon induction as an optimization problem. The assumption was that lexicons
of closely related languages offer one-to-one mapping and share a significant number of cognates
(words with similar spelling/form and meaning originating from the same root language). With
this assumption, they developed a constraint optimization model to induce an Uyghur-Kazakh
bilingual dictionary using Chinese language as the pivot, which means that Chinese words were
used as intermediates to connect Uyghur words in an Uyghur-Chinese dictionary with Kazakh
words in a Kazakh-Chinese dictionary. They used a graph whose vertices represent words and
edges indicate shared meanings; they called this a transgraph following [29]. The steps in their ap-
proach are as follows: (1) use two bilingual dictionaries as input; (2) represent them as transgraphs
where wA

1 and wA
2 are non-pivot words in language A, wB

1 and wB
2 are pivot words in language

B, and wC
1 , w

C
2 , and w

C
3 are non-pivot words in language C; (3) add some new edges represented

by dashed edges based on the one-to-one assumption; (4) formalize the problem into conjunctive
normal form (CNF) and use the Weighted Partial MaxSAT (WPMaxSAT) solver [1] to return the
optimized translation results; and (5) output the induced bilingual dictionary as the result. These
steps are shown in Figure 1. The one-to-one approach depends only on semantic equivalence, one
of the closely related language characteristics that permit the recognition of cognates between
languages assuming that lexicons of closely related languages offer the one-to-one relation. If lan-
guage A and C are closely related, then for any word in A there exists a unique word in C such
that they have exactly the same meaning, and thus are symmetrically connected via pivot word(s).
Such a pair is called a one-to-one pair. They realized that this assumption may be too strong for the
general case, but they believed that it was reasonable for closely related languages like Turkic lan-
guages. They believe that their method works best for languages with high-similarity. They tried
to improve the precision by utilizing multiple input dictionaries [36] while still applying the same
one-to-one assumption. However, this assumption is too strong to be used for the induction of as
many translation pairs as possible to offset resource paucity, because the few such pairs are yielded.
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Table 1. Similarity Matrix of Top 10 Indonesian Ethnic Languages Ranked by Number of Speakers

Language Indonesian Malang Yogyakarta Old Javanese Sundanese Malay Palembang Malay Madurese Minangkabau
Malang 23.46%
Yogyakarta 27.29% 87.36%
Old Javanese 24.09% 47.50% 52.18%
Sundanese 39.43% 18.55% 22.43% 21.82%
Malay 85.10% 20.53% 24.35% 21.36% 41.12%
Palembang Malay 68.24% 33.97% 37.97% 31.85% 38.90% 73.23%
Madurese 34.45% 17.63% 14.15% 15.18% 19.86% 34.16% 34.32%
Minangkabau 61.59% 26.59% 29.63% 25.01% 30.81% 61.66% 63.60% 34.32%
Buginese 31.21% 12.76% 16.85% 18.33% 24.80% 32.04% 31.00% 17.94% 32.00%

3 CLOSELY RELATED LANGUAGES

Historical linguistics is the scientific study of language change over time in term of sound, analog-
ical, lexical, morphological, syntactic, and semantic information [4]. Comparative linguistics is a
branch of historical linguistics that is concerned with language comparison to determine historical
relatedness and to construct language families [13]. Many methods, techniques, and procedures
have been utilized in investigating the potential distant genetic relationship of languages, includ-
ing lexical comparison, sound correspondences, grammatical evidence, borrowing, semantic con-
straints, chance similarities, sound-meaning isomorphism, and so on [5]. The genetic relationship
of languages is used to classify languages into language families. Closely related languages are
those that came from the same origin or proto-language and belong to the same language family.
Automated Similarity Judgment Program (ASJP) was proposed in Reference [11] with the main

goal of developing a database of Swadesh lists [30] for all of the world’s languages fromwhich lexi-
cal similarity or lexical distance matrix between languages can be obtained by comparing the word
lists. We utilize ASJP to select our low-resource target languages for our first case study in this ar-
ticle. Indonesia has 707 low-resource ethnic languages [14] that are suitable as target languages in
our study. There are three factorswe consider in selecting the target languages: language similarity,
input bilingual dictionary size, and number of speakers. To ensure that the induced bilingual dictio-
naries will be useful for many users, we listed the top 10 Indonesian ethnic languages ranked by the
number of speakers. We then generated the language similarity matrix by utilizing ASJP as shown
in Table 1. From this list, the biggest sizemachine-readable bilingual dictionaries areMinangkabau-
Indonesian and Malay-Indonesian. After considering all those factors, we selected Malay, Mi-
nangkabau and Indonesian as our target languages for the low-resource languages case study.
Several machine translation studies focused on closely related languages [19, 25, 33]. In this

research, the linguistic characteristics of the closely related languages play a vital role in improving
quality of our method.

4 COGNATE AND COGNATE SYNONYM RECOGNITION

By utilizing linguistic information, we establish a strategy to obtain many-to-many translation
pairs from a transgraph. The first step is to recognize one-to-one cognates in the transgraph that
shares all their senses. Once a list of cognates is obtained, the next step is to recognize cognate
synonyms in the transgraph; those that share part/all senses with the cognate and so are mutually
connected to some/all pivot words. Those two steps are easy taskswhen the input dictionaries have
sense/meaning information as shown in Figure 2, where a cognate pair (wA

1 ,w
C
1 ) share two senses,

that is, s1 and s2 through pivot word wB
1 and a cognate pair (wA

2 ,w
C
2 ) only share s1 through pivot

wordwB
1 andwB

2 . Since for low-resource languages, a machine-readable bilingual dictionary with
sense information is scarce, we regard connected words share at least one sense/meaning. Thus,
we assume that non-pivot words that are symmetrically connected via pivot word(s) potentially
share all their senses and so being a cognate.
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Fig. 2. Strategy to recognize cognates and cognate synonyms.

Fig. 3. Cognate and cognate synonym example.

Cognates are words with similar spelling/form and meaning that have a common etymological
origin. For instance, the words night (English), nuit (French), noche (Spanish), nacht (German), and
nacht (Dutch) have the samemeaning, which is ”night,” and derived from the Proto-Indo-European
*nókw ts with the same meaning of “night.” Since most linguists believe that lexical comparison
alone is not a good way to recognize cognates [4], we want to utilize a more general and basic
characteristic of closely related languages, which is as follows: A cognate pair mostly maintain
the semantic or meaning of the lexicons. Even though there is a possibility of a change in one
of the meanings of a word in a language, within the families where the languages are known to
be closely related, the possibility of a change is smaller. Since our approach targets the closely
related languages, it is safe to make the following assumption based on the semantic character-
istic of closely related languages: Given a pair of words, wA

i of language A and wC
k
of language C,

if they are cognates, then they share all of their senses/meanings and are symmetrically connected

through pivot word(s) from language B. We call this the symmetry assumption. Unfortunately, in
some cases, symmetry assumption is inadequate to eliminate wrong cognate from the cognate
pair candidates when a pivot-word has multiple indegree/outdegree. To correctly find cognates,
not only the meaning (which is predicted by shared edges) but also the form need to be considered.
We add form-similarity/lexical distance rate as a new heuristic in finding cognates following [17]
using the Longest Common Subsequence Ratio (LCSR).
Some linguistic studies show that the meaning of a word can be deduced via cognate synonym

[9, 34]. For instance, in Figure 3, wA
1 , w

A
2 , and w

A
3 are words in the Minangkabau language (min);

wB
1 ,w

B
2 andwB

3 are words in the Indonesian language (ind); andwC
1 ,w

C
2 , andw

C
3 are words in the

Malay language (zlm). When we connect words in non-pivot language A and C via pivot words B
based on shared meaning between the words, we can get translation results from language A to
C. In this example, we have information about senses/meanings for all words in input dictionaries
and there are three cognates that are (wA

1 ,w
B
1 ,w

C
1 ), (w

A
2 ,w

B
2 ,w

C
2 ), and (wA

3 ,w
B
3 ,w

C
3 ), as indicated
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Fig. 4. Cognate synonym recognition.

within the same box in Figure 3. A cognate wA
1 -w

C
1 and non-cognates wA

1 -w
C
2 and wA

1 -w
C
3 are

correct translations, sincewC
1 ,w

C
2 , andw

C
3 are synonymous.

Nevertheless, it remains a challenge to find the cognate synonyms when the input dictionar-
ies do not have information about senses/meanings. As shown in Figure 4, to recognize cognate
synonyms, first, we need to recognize synonyms of wC

2 based on ratio of shared connectivity
with the pivot word(s), since we assume that synonymous words are connected to common pivot
word(s). ThenwA

1 will be paired with the recognized synonyms ofwC
2 to obtain cognate synonym

pairs. The higher the ratio of shared connectivity between a synonym ofwC
2 with the pivot words

(wB
1 ,w

B
2 ,w

B
3 ), the higher the probability of the synonym being a translation pair withwA

1 .
Finally, by recognizing both cognate pairs and cognate synonym pairs, we can obtain many-to-

many translation results.

5 GENERALIZATIONOF CONSTRAINT-BASED LEXICON INDUCTION FRAMEWORK

We generalize the constraint-based lexicon induction framework by extending the existing one-
cycle symmetry assumption into the n-cycle symmetry assumption and identify cognates and cog-
nate synonyms by utilizing four heuristics to improve the quality and quantity of the translation
pair results.

5.1 Tripartite Transgraph

To model translation connectivity between language A and C via pivot language B, we define the
tripartite transgraph, which is a tripartite graph in which a vertex represents a word and an edge
represents the indication of shared meaning(s) between two vertices. Two tripartite transgraphs
can be joined if there exists at least one edge connecting a pivot vertex in one tripartite transgraph
to one non-pivot vertex in the other tripartite transgraph. To maintain the basic form of a tripar-
tite transgraph with n number of pivot words (at least 1 pivot per transgraph), each pivot word
must be connected to at least one word in every non-pivot language, and there has to be a path
connecting all pivot words via non-pivot words. Hereafter, we abbreviate the tripartite transgraph
to transgraph.
In this research, we assume that the input dictionaries contain no sense information. After

modeling the translation connectivity from the input dictionaries as transgraphs, we further
analyze the shared edges between the non-pivot vertices and the pivot vertices to predict the
shared meanings between them. We then formalize the problem into Conjunctive Normal Form
(CNF) and using WPMaxSAT solver to return the most probable correct translation results.
Sometimes, for high-resource languages where the input dictionaries have many shared mean-

ings via the pivot words, a big transgraph can be generated, which potentially leads to excessive
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Fig. 5. Symmetry and asymmetry transgraphs.

Fig. 6. N-cycle symmetry assumption extension.

computational complexity when we formalize and solve it. Nevertheless, for low-resource lan-
guages where we can expect the input dictionaries to have just a few sharedmeanings via the pivot
words, transgraph size is small enough to make its formalization and solution feasible. Therefore,
for the sake of simplicity, we ignore big transgraphs in our experiments.

5.2 N-cycle Symmetry Assumption

Machine-readable bilingual dictionaries are rarely available for low-resource languages like In-
donesian ethnic languages. It is even difficult to find sizable printed bilingual dictionary with ac-
ceptable quality for Indonesian ethnic languages. In the currently available machine-readable or
printed dictionaries, we can expect to find missed senses/meanings that would lead to asymmetry
in the transgraph. The expectedmissed senses are represented as dashed edges in the transgraph as
depicted in Figure 5(b). The one-to-one approach only considers translation pair candidates from
existing connected solid edges in the transgraph as shown in Figure 6(a). To fully satisfy symme-
try constraint in the transgraph, we extend the existing one-cycle symmetry assumption to the
n-cycle symmetry assumption while considering new translation pair candidates from the new
dashed edges. As shown in Figure 6(b), during the second cycle, the previously new dashed edges
developed in the first cycle are taken to exist, therefore, we can extract translation pair candidates
not only from the solid edges but also from the previously added dashed-edges. Users can input
the maximum cycle for the experiment as shown in Algorithm 2 (asmaxCycle).

5.3 Formalization

Constraint optimization problem formalism has been used in solving many natural language pro-
cessing and web service composition related problems [10, 16]. Our team [37] formalized bilingual
lexicon induction as a WPMaxSAT problem. In this article, we follow the same formulation. A
literal is either a Boolean variable x or its negation ¬x . A clause C is a disjunction of literals
x1 ∨ ... ∨ xn . A unit clause is a clause consisting of a single literal. A weighted clause is a pair
(C,ω), where C is a clause and ω is a natural number representing the penalty for falsifying the
clause C . If a clause is hard, then the corresponding weight is infinity. The propositional formula
φωc in CNF [2] is a conjunction of one or more clausesC1 ∧ ... ∧Cn . CNF formula with soft clauses
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is represented asφ+c andφ∞c represents a CNF formula with hard clauses. TheWPMaxSAT problem
for a multiset of weighted clauses C is the problem of finding an optimal assignment to the vari-
ables of C that minimizes the cost of the assignment on C . Let wA

i , w
B
j , and w

C
k
represents words

from language A, B, and C . We define seven propositions as Boolean variables between a pair of
wordswA

i ,w
B
j , andw

C
k
as follows:

• e (wA
i ,w

B
j ) and e (wB

j ,w
C
k
) represents edge existence between word pair from language A

and B and from language B and C, respectively,
• c (wA

i ,w
C
k
), c (wA

i ,w
C
n ), and c (wA

m ,w
C
k
) represents whether the word pair from language A

and C is a cognate pair, and
• s (wA

i ,w
C
n ) and s (wA

m ,w
C
k
) represents whether the word pair from language A and C is a

cognate synonym pair

To encode some of the constraints to CNF, we use a resolution approach based on the Boolean
algebra rule of p → q ∧ r ⇔ (¬p ∨ q) ∧ (¬p ∨ r ). In the framework, we define EE as a set of word
pairs connected by existing edges, EN as a set of word pairs connected by new edges, DC as a set
of translation pair candidates, DCo as a set of cognate pairs, DNCo as a set of non-cognate pairs,
DPCo as a set of pivot words from language B that are connecting the current cognate pair, and
DR as a set of all translation pair results returned by the WPMaxSAT solver.

5.4 Heuristics to Find Cognate

We define four heuristics to find cognates in the transgraph: cognate pair coexistence probability,
missing contribution rate toward cognate pair coexistence, polysemy pivot ambiguity rate, and
cognate form similarity. Based on our symmetry assumption, when wA

i and wC
k
in a transgraph

share all of their senses through pivot word(s) from language B, they are a potential cognate pair,
where the cognate pair coexistence probability equals 1, the missing contribution equals 0 and
the polysemy pivot ambiguity rate equals 0. When wA

i and wC
k
have the same spelling, they are

a potential cognate pair, where the cognate form similarity equals 1. Thus, when wA
i and wC

k
are

satisfying the symmetry assumption and also have the same spelling, we take them as the highest
potential cognate pair in the transgraph.

5.4.1 Cognate Pair Coexistence Probability. Cognate pairs of language A and C are induced
from two input bilingual dictionaries, that is, Dictionary A-B and Dictionary B-C. We define two
sets of event for Dictionary A-B (wA

i and wB
j ) where event w

A
i represents connecting word wA

i of
language A to words of language B represented by edges based on shared meaning between them.
Similarly, eventwB

j represents connecting wordwB
j of language B to words of language A. We also

define two sets of event for Dictionary B-C (wB
j and wC

k
), where event wB

j represents connecting

word wB
j of language B to words of language C and event wC

k
represents connecting word wC

k
of

language C to words of language B. A marginal probability P (wA
i ) is a probability ofw

A
i connected

to words of language B. A conditional probability P (wA
i |wB

j ) is a probability ofw
A
i connected towB

j

considering other words of language A that also connected to wB
j . A joint probability P (wA

i ,w
B
j )

is a probability of wA
i interconnected to wB

j . For example, in Figure 7, P (wA
1 ) = 2/3, since wA

1 has
two connected edges with words of language B of three existing connected edges between words
of language A and words of language B. The joint probability P (wA

1 ,w
B
1 ) = 1/3, since any word

from language A and any word from language B are only interconnected with one edge of three
existing connected edges between words of language A and words of language B.
To calculate the possibility of a translation pair candidate t (wA

i ,w
C
k
) being a cognate pair

c (wA
i ,w

C
k
), we calculate t (wA

i ,w
C
k
).Hcoex , a cognate coexistence probability of translation pair
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Fig. 7. Example of marginal and joint probability.

Fig. 8. Symmetry pair coexistence probability.

candidate t (wA
i ,w

C
k
). We first utilize a chain rule to obtain Equations (1) and (2). By multiplying

them, we can get Equation (3). Event wA
i and event wC

k
are independent, since they are from

a different input bilingual dictionary, thus, P (wC
k
,wA

i ) = P (wA
i )P (w

C
k
) and Equation (3) can be

rewritten as Equation (4). We use a generative probabilistic process commonly used in prior work
[6, 18, 22, 35] in Equation (5) to obtain P (wA

i |wC
k
) and P (wC

k
|wA

i ). Finally, we can obtain a cognate

coexistence probability of translation pair candidate t (wA
i ,w

C
k
) as t (wA

i ,w
C
k
).Hcoex = P (wA

i ,w
C
k
).

P (wA
i ,w

C
k ) = P (wC

k |wA
i )P (w

A
i ), (1)

P (wC
k ,w

A
i ) = P (wA

i |wC
k )P (w

C
k ), (2)

P (wA
i ,w

C
k )P (w

C
k ,w

A
i ) = P (wA

i |wC
k )P (w

C
k |wA

i )P (w
A
i )P (w

C
k ), (3)

P (wA
i ,w

C
k ) = P (wA

i |wC
k )P (w

C
k |wA

i ), (4)

P (wA
i |wC

k ) =
∑
j=0

P (wA
i |wB

j )P (w
B
j |wC

k ). (5)

WhenwA
i andwC

k
in a transgraph share all of their senses through pivot word(s) from language

B and none of the pivot words are ambiguous, the cognate pair coexistence probability equals 1,
as shown in Figure 8. The algorithm to calculate the probability of the translation pair candidates
coexisting as a cognate is shown in Algorithm 1 line number 19. The coexistence probability is
very important in differentiating cognates from non-cognates, but it is poor at avoiding polysemy
in pivot words. This is because it treats polysemy in the pivot words and polysemy in the non-
pivot words equally. In reality, however, polysemy in pivot words negatively impacts the quality
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Fig. 9. Equal treatment of polysemy in pivot/non-pivot word.

Fig. 10. Polysemy in pivot and non-pivot language.

of bilingual dictionary induction rather than polysemy in non-pivot words. A case with high poly-
semy in pivot words and low polysemy in non-pivot words and a case with low polysemy in pivot
words and high polysemy in non-pivot words where the two cases have equal rates of polysemy,
will yield same probability as shown in Figure 9. Therefore, we introduce a special heuristic to
tackle this problem, that is, polysemy pivot ambiguity rate.

5.4.2 Missing Contribution Rate Toward Cognate Pair Coexistence. Inspired by the Shapley
Value [26], a solution concept in cooperative game theory, we calculate missing contribution rate
toward cognate pair coexistence probability by calculating coexistence probability of supposed
cognate pair (also considering missing edges as existing) minus the coexistence probability of the
pair from existing connectivity only. When wA

i and wC
k
in a transgraph share all of their senses

through pivot word(s) from language B (no missing senses), the missing contribution equals 0. The
lower is the missing contribution toward coexistence probability of a translation pair candidate,
the more likely is the translation pair candidate of being a cognate. The calculation of missing
contribution rate of wA

1 and wC
1 pair, that is, t (wA

i ,w
C
k
).HmissCont is shown in Algorithm 1 line

number 20.

5.4.3 Polysemy Pivot Ambiguity Rate. To model the effect of polysemy in the pivot language
on precision, for the sake of simplicity, we ignore synonym words within the same language.
Polysemy in non-pivot languages have no negative effect on precision. In Figure 10(a), even though
the non-pivot words are connected by four pivot words representing four senses/meanings, the
transgraph only has one translation pair candidate (wA

1 -w
C
1 ) and so the precision is 100%.
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Fig. 11. Prediction model of precision on polysemy in pivot language.

However, polysemy in pivot language negatively impacts precision. Figure 10(b) shows that
non-pivot word wA

1 and wC
1 are cognates and share the same meanings (s1, s2, s3), but pivot word

wB
1 that has four meanings (s1, s2, s4, s5) only shares a part of the meanings (s1, s2) with the non-

pivot words. The solid edges have part or all shared meanings (s1, s2) between the non-pivot words
(wA

1 , w
C
1 ) and the pivot word wB

1 . The dashed edges express part or all unshared meanings (s4, s5)
between the non-pivot words (wA

1 , w
C
1 ) and the pivot word wB

1 . To investigate the effect of pivot
wordwB

1 on the overall precision, we extract only translation pair candidates from the connected
edges. The precision (38.89%) is affected negatively as there are 22 wrong translations because of
the polysemy in pivot language (wB

1 ) in the transgraph.
We formalize the effect of polysemy in pivot language on precision with the following formu-

lation where n is the number of shared meanings between pivot word and non-pivot words andm
is the number of pivot meaning(s) that are not shared with non-pivot words. The number of cor-
rect translations contributed by the solid edges and the number of correct translations contributed
by the dashed edges can be calculated by Equation (6). The precision of the translation result is
calculated by Equation (7),

CorrectTrans (n) = 2
n∑
i=1

i∑
j=1

(
n

i

) (
i

j

)
−

n∑
i=1

(
n

i

)
, (6)

Precision(n,m) =
CorrectTrans (n) +CorrectTrans (m)[∑n

i=1

(
n

i

)
+

∑m
i=1

(
m

i

)]2 . (7)

We predict the effect of shared meanings between pivot word and non-pivot words by simulating
10 sets of transgraphs with n (the number of shared meanings between pivot word and non-pivot
words) values ranging from 1 to 10 where, in each set, m (the number of pivot meaning(s) that
not shared with non-pivot words) ranges from 0 to n in Figure 11. In this experiment, non-pivot
languages and pivot language are closely related languages (wA

1 , w
B
1 , and w

C
1 are cognates) when

there is no pivot meaning that not shared with non-pivot words (m = 0). This result shows that
the greater the number of shared senses/meanings (represented by n) between pivot and non-
pivot words there are, the lower the precision is. Nevertheless, the polysemy in the pivot language
has the least negative effect on the precision when the pivot language and non-pivot languages
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are closely related where the number of unshared pivot senses (represented bym) equals 0. The
negative effect increases as the value ofm increases.

Polysemy in pivot words negatively impacts the precision of the translation result, unlike that
in non-pivot words. Since we do not have any information about the senses from the input dic-
tionaries, it is difficult to avoid the negative effect of the polysemous pivot word. To predict a
probability ofwA

i and wC
k
to be a cognate pair via the pivot word wB

j that shares common senses,

we assume the worst-case scenario where the number of senses belonging to pivot wordwB
j equals

the maximum number of connected edges to wA
i or wC

k
. If the maximum number of indegree or

outdegree of the polysemy pivot is n, then there are 2n − 1 possible combination of shared senses
for every paths via pivot word wB

j in order for the translation pair candidates to be a cognate

pair c (wA
i ,w

C
k
) of all (2n − 1)2 combinations. In Figure 5(b), the possible combination of shared

senses betweenwA
1 andwC

1 or betweenwA
1 andwC

2 are [s1, s2, s1 & s2]. To calculate the probability
of the pair wA

i and wC
k
being a cognate considering polysemy in the pivot words, we calculate

t (wA
i ,w

C
k
).PsharedSenses , the product of the probabilities of shared senses between the pair for ev-

ery existing path as shown in Algorithm 1 line number 10. The polysemy pivot ambiguity rate is
given by t (wA

i ,w
C
k
).Hpolysemy = 1 − t (wA

i ,w
C
k
).PsharedSenses as shown in Equation (8) and Algo-

rithm 1 line number 21,

t (wA
i ,w

C
k ).Hpolysemy = 1 −

∏ (
(2n − 1)/(2n − 1)2

)
= 1 −

∏ (
1/(2n − 1)

)
. (8)

The lower the polysemy pivot ambiguity rate is, the more likely it is that the pair form a cognate
and share exact senses. When there is only one path between wA

i and wC
k
and there is only one

indegree and one outdegree of the pivot wordwB
j , the polysemy pivot ambiguity rate equals 0.

5.4.4 Cognate Form Similarity. Because the symmetry assumption can sometimes fail to select
a cognate correctly when it gives the same cost for multiple translation pair candidates, the cog-
nate form similarity heuristic will contribute to selecting the cognate. We calculate cognate form
similarity using LCSR ranging from 0 (0% form-similarity) to 1 (100% form-similarity) following
Reference [17] as shown in Equation (9) and Algorithm 1 line number 22, where LCS (wA

i ,w
C
k
) is

the longest common subsequence of wA
i and wC

k
; |x | is the length of x ; and max ( |wA

i |, |wC
k
|) re-

turns the longest length. However, the maximum cost contributed from the form dissimilarity is
set at 1/100 of the maximum cost contributed by one symmetry assumption heuristic as shown in
Algorithm 2 line number 24 to ensure that the cognate form similarity heuristic will have only a
supporting role in helping the main symmetry assumption heuristics,

LCSR (wA
i ,w

C
k ) =

|LCS (wA
i ,w

C
k
) |

max ( |wA
i |, |wC

k
|) , (9)

t (wA
i ,w

C
k ).Hf ormSim = LCSR (wA

i ,w
C
k ). (10)

5.5 Constraints Extension

We extend the one-to-one approach constraints by adding several new constraints to the constraint
sets to find cognates and cognate synonyms. All constraints are listed in Table 2.

5.5.1 Edge Existence. An edge exists in the transgraph between words that share their mean-
ing(s) based on input dictionaries. The existing edges in the transgraph are encoded as TRUE, that
is, e (wA

i ,w
B
j ) and e (w

B
j ,w

C
k
) in the CNF formula, which is represented as hard constraint φ∞1 .
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ALGORITHM 1: Cognate Pair Probability Calculation

Input: Translation pair candidate t (wA
i ,w

C
k
);

Output: Translation pair candidate t (wA
i ,w

C
k
) with cognate pair probabilites information

1 P (wA
i ,w

C
k
) = 0; P (wC

k
,wA

i ) = 0; Pmissinд (w
A
i ,w

C
k
) = 0; Pmissinд (w

C
k
,wA

i ) = 0;

2 for each path in t (wA
i ,w

C
k
).Paths do

3 P (wA
i |wB

j ) = 0; P (wB
j |wC

k
) = 0; P (wC

k
|wB

j ) = 0; P (wB
j |wA

i ) = 0;

/* Conditional Probability direction: A-C */

4 for each inEdge inwB
j .inEdдes from language A dowB

j .indeдreeFromA += 1/inEdдe .Prob;

5 for each inEdge inwC
k
.inEdдes from language B dowC

k
.indeдreeFromB += 1/inEdдe .Prob;

6 P (wA
i |wB

j ) = 1 /wB
j .indeдreeFromA; P (wB

j |wC
k
) = 1 /wC

k
.indeдreeFromB;

/* Conditional Probability direction: C-A */

7 for each inEdge inwB
j .inEdдes from language C dowB

j .indeдreeFromC += 1/inEdдe .Prob;

8 for each inEdge inwA
i .inEdдes from language B dowA

i .indeдreeFromB += 1/inEdдe .Prob;

9 P (wC
k
|wB

j ) = 1 /wB
j .indeдreeFromC; P (wB

j |wA
i ) = 1 /wA

i .indeдreeFromB;

10 t (wA
i ,w

C
k
).PsharedSenses ∗= 1/(2max (wB

j .indeдreeF romA,wB
j .indeдreeF romC ) − 1);

11 if missing edge exist in path then

12 Pmissinд (w
A
i |wC

k
) += P (wA

i |wB
j )P (w

B
j |wC

k
);

13 Pmissinд (w
C
k
|wA

i ) += P (wC
k
|wB

j )P (w
B
j |wA

i );

14 else

15 P (wA
i |wC

k
) += P (wA

i |wB
j )P (w

B
j |wC

k
);

16 P (wC
k
|wA

i ) += P (wC
k
|wB

j )P (w
B
j |wA

i );

17 end

18 end

19 t (wA
i ,w

C
k
).Hcoex = P (wA

i |wC
k
)P (wC

k
|wA

i );

20 t (wA
i ,w

C
k
).HmissCont =

(P (wA
i |wC

k
) + Pmissinд (w

A
i |wC

k
)) (P (wC

k
|wA

i ) + Pmissinд (w
C
k
|wA

i )) − (P (wA
i |wC

k
)P (wC

k
|wA

i ));

21 t (wA
i ,w

C
k
).Hpolysemy = 1 − t (wA

i ,w
C
k
).PsharedSenses ;

22 t (wA
i ,w

C
k
).Hf ormSim = LCSR (wA

i ,w
C
k
);

23 return t (wA
i ,w

C
k
);

5.5.2 Edge Non-Existence. An edge does not exist in the transgraph between words that do
not share their meaning(s) based on input dictionaries. We formalize the non-existence of edge
in the transgraph by encoding the negation of the literal edge existence, that is, ¬e (wA

i ,w
B
j ) and

¬e (wB
j ,w

C
k
) in the CNF formula, which is represented as soft constraint φ+2 .

5.5.3 Symmetry. Cognate share all of their senses/meanings and symmetrically connected via
pivot language B. We convert c (wA

i ,w
C
k
) → e (wA

i ,w
B
1 ) ∧ e (wA

i ,w
B
2 ) ∧ ... ∧ e (wB

1 ,w
C
k
) ∧ e (wB

2 ,w
C
k
)

∧... into (¬c (wA
i ,w

C
k
) ∨ e (wA

i ,w
B
1 )) ∧ (¬c (wA

i ,w
C
k
) ∨ e (wA

i ,w
B
2 )) ∧ .... ∧ (¬c (wA

i ,w
C
k
) ∨ e (wB

1 ,

wC
k
)) ∧ (¬c (wA

i ,w
C
k
) ∨ e (wB

1 ,w
C
k
)) ∧ ... It is encoded as hard constraint φ∞3 . Unfortunately, a

problem arises with low-resource languages where the input dictionaries have no sense infor-
mation and many senses are expected to be missed due to the small size of the dictionaries. To
solve this problem, we add new edges so cognate pairs share all of the meanings by violating
the edge non-existence soft constraint φ+2 and paying a cost determined from user-selected
heuristics (cognate pair coexistence probability, missing contribution rate toward the cognate pair
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Table 2. Constraints for Cognates and Cognate Synonyms Extraction

ID CNF Formula

Edge Existence:

φ∞1
( ∧
(wA

i ,w
B
j )∈EE

(
e (wA

i , w
B
j ), ∞

))
∧

( ∧
(wB

j ,w
C
k
)∈EE

(
e (wB

j , w
C
k
), ∞

))

Edge Non-Existence:

φ+2

( ∧
(wA

i ,w
B
j )∈EN

(
¬e (wA

i , w
B
j ), ω (wA

i , w
B
j )

))
∧

( ∧
(wB

j ,w
C
k
)∈EN

(
¬e (wB

j , w
C
k
), ω (wB

j , w
C
k
)
))

Symmetry:

φ∞3
( ∧
(wA

i ,w
B
j )∈EE∪EN

(wA
i ,w

C
k
)∈DC

(
(¬c (wA

i , w
C
k
) ∨ e (wA

i , w
B
j )), ∞

))
∧

( ∧
(wB

j ,w
C
k
)∈EE∪EN

(wA
i ,w

C
k
)∈DC

(
(¬c (wA

i , w
C
k
) ∨ e (wB

j , w
C
k
)), ∞

))

Uniqueness:

φ∞4
( ∧

k�n
(wA

i ,w
C
k
)∈DC

(wA
i ,w

C
n )∈DC

(
(¬c (wA

i , w
C
k
) ∨ ¬c (wA

i , w
C
n )), ∞

))
∧

( ∧
i�m

(wA
i ,w

C
k
)∈DC

(wA
i ,w

C
n )∈DC

(
(¬c (wA

i , w
C
k
) ∨ ¬c (wA

m, wC
k
)), ∞

))

Extracting at Least One Cognate:

φ∞5 ��
( ∨
(wA

i ,w
C
k
)�DR

c (wA
i , w

C
k
)
)
, ∞��

Encoding Cognate:

φ∞6
∧

(wA
i ,w

C
k
)∈DCo

(
c (wA

i , w
C
k
), ∞

)

Encoding Non-Cognate:

φ∞7
∧

(wA
i ,w

C
k
)∈DNCo

(
¬c (wA

i , w
C
k
), ∞

)

Cognate Synonym:

φ∞8 �� ∧
k�n

(wA
i ,w

C
k
)∈DCo

(wA
i ,w

C
n )�DR

(
(¬s (wA

i , w
C
n ) ∨ c (wA

i , w
C
k
)), ∞

)
∧

( ∧
wB
j ∈DPCo

(
(¬s (wA

i , w
C
n ) ∨ e (wB

j , w
C
n )), ∞

))��
∧�� ∧

i�m
(wA

m,wC
k
)∈DCo

(wA
i ,w

C
k
)�DR

(
(¬s (wA

m, wC
k
) ∨ c (wA

i , w
C
k
)), ∞

)
∧

( ∧
wB
j ∈DPCo

(
(¬s (wA

m, wC
k
) ∨ e (wA

m, wB
j )), ∞

))��
Extracting at Least One Cognate Synonym:

φ∞9 ��
( ∨
(wA

i ,w
C
k
)�DR

s (wA
i , w

C
k
)
)
, ∞��

coexistence probability, polysemy pivot ambiguity rate, and cognate form similarity). In other
words, we assume the edges exist. The higher the cognate pair coexistence probability and the
lower the missing contribution rate toward the cognate pair coexistence probability and the lower
the polysemy pivot ambiguity rate and the higher the cognate form similarity, the more likely it
is that the pair form a cognate, thus, the lower is the cost of adding any new edge to it, that is,
the new edge weight. The new edges in the transgraph is encoded as FALSE (NOT exist), that is,
¬e (wA

i ,w
B
j ) or ¬e (wB

j ,w
C
k
) in the CNF formula and depicted as dashed edges in the transgraph.

The weight of the new edge from non-pivot word wA
i to pivot word wB

j is defined as ω (wA
i ,w

B
j )

and the weight of a new edge from pivot wordwB
j to non-pivot wordwC

k
is defined as ω (wB

j ,w
C
k
).
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A Generalized Constraint Approach to Bilingual Dictionary Induction 9:15

Both of ω (wA
i ,w

B
j ) and ω (wB

j ,w
C
k
) values equal t (wA

i ,w
C
k
).Hcoex + t (w

A
i ,w

C
k
).HmissCont +

t (wA
i ,w

C
k
).Hpolysemy + t (w

A
i ,w

C
k
).Hf ormSim as shown in Algorithm 2 line numbers 21–24.

5.5.4 Uniqueness. The first step of our strategy in obtaining many-to-many translation pair
with good quality is to extract a list of cognates in the transgraph. The uniqueness constraint
ensures that only one-to-one cognates that share all of their meanings will be considered as trans-
lation pairs. In other words, a word in language A can only be a cognate with just one word from
language C. This is encoded as hard constraint φ∞4 .

5.5.5 Extracting at Least One Cognate. Since the framework communicates with WPMaxSAT
solver iteratively as shown in Algorithm 2 line numbers 2–7, hard constraint φ∞5 ensures that
at least one of the c (wA

i ,w
C
k
) variables must be evaluated as TRUE. Consequently, each iteration

yields one most probable cognate pair and stores it in DCo and also in DR as a translation pair
result. This clause is a disjunction of all c (wA

i ,w
C
k
) variables.

5.5.6 Encoding Cognate. We exclude previously selected translation pairs, which are stored
in DCo from the following list of cognate pair candidates by encoding them as TRUE, that is,
c (wA

i ,w
C
k
), which is encoded as hard constraint φ∞6 , and excluding them from φ∞5 .

5.5.7 Encoding Non-Cognate. Once we get list of all cognate pairs, stored inDCo , the remaining
translation pair candidates are stored in DNCo and encoded as FALSE, that is, ¬c (wA

i ,w
C
k
) in the

CNF formula, which is represented as hard constraint φ∞7 .

5.5.8 Cognate Synonym. We can further identify cognate synonyms to improve the quantity
of the translation results. For each cognate pair c (wA

i ,w
C
k
) stored in DCo , we can find cognate

synonym pairs s (wA
i ,w

C
n ) and s (wA

m ,w
C
k
) by extracting synonyms of wC

k
and wA

i , respectively.
We assume that synonymous words are connected to common pivot words. We can add new
edges by paying cost of violating soft-constraint φ+2 with a weight different from that used when
identifying cognate pairs in the first step. In this second step, the weight is calculated based
on cognate synonym probability PcoдnateSyn for both wC

n -w
C
k
and wA

m-w
A
i based on percentage

of shared connectivity with the pivot words. The weight, that is, 1 − PcoдnateSyn is distributed
evenly to each new edges. We convert s (wA

i ,w
C
n ) → c (wA

i ,w
C
k
) ∧ e (wB

1 ,w
C
n ) ∧ e (wB

2 ,w
C
n ) ∧

... into (¬s (wA
i ,w

C
n ) ∨ c (wA

i ,w
C
k
)) ∧ (¬s (wA

i ,w
C
n ) ∨ e (wB

1 ,w
C
n )) ∧ (¬s (wA

i ,w
C
n ) ∨ e (wB

2 ,w
C
n )) ∧ ....

With the same rule, we convert s (wA
m ,w

C
k
) → c (wA

i ,w
C
k
) ∧ e (wA

m ,w
B
1 ) ∧ e (wA

m ,w
B
2 ) ∧ ... into

(¬s (wA
m ,w

C
k
) ∨ c (wA

i ,w
C
k
)) ∧ (¬s (wA

m ,w
C
k
) ∨ e (wA

m ,w
B
1 )) ∧ (¬s (wA

m ,w
C
k
) ∨ e (wA

m ,w
B
2 )) ∧ .... It is

encoded as hard constraint φ∞8 . In Figure 4, s (wA
1 ,w

C
3 ).PcoдnateSyn = 1, s (wA

1 ,w
C
4 ).PcoдnateSyn =

0.67, and s (wA
1 ,w

C
1 ).PcoдnateSyn = 0.33. Another example, in Figure 5(a), if cognate pair

c (wA
1 ,w

C
1 ) is identified, we need to identify cognate synonym probability of wA

1 (no can-
didate exist) and wC

1 (candidate: wC
2 ). Based on the rate of shared connectivity with pivot

word(s), s (wA
1 ,w

C
2 ).PcoдnateSyn = 2/2 and in Figure 5(b) with the same way we can get

s (wA
1 ,w

C
2 ).PcoдnateSyn = 1/2.

5.5.9 Extracting at Least One Cognate Synonym. In the second step, that is, finding cognate
synonyms, the framework also communicates with the WPMaxSAT solver iteratively as shown in
Algorithm 2 line numbers 8–13, and hard constraint φ∞9 ensures that at least one of the s (wA

i ,w
C
n )

variables or s (wA
m ,w

C
k
) variables must be evaluated as TRUE. Consequently, each iteration yields

one most probable cognate synonym pair and store it inDR as a translation pair result. This clause
is a disjunction of all s (wA

i ,w
C
k
) variables.
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ALGORITHM 2: Cognate and Cognate Synonym Extraction

Input: transдraphs ,maxCycle , threshold , HSelections;
Output: DR /* list of translation pair results */

1 for each transдraph in calculateEdgeCost(transgraphs)) do
/* Extract the most probable cognate pair and cognate synonym pair with total

cost of violating constraints below the threshold iteratively */

2 CNFcoдnate ← constructCNFcoдnate (transдraph.DC ); /* following Equation (11) */

3 while coдnatePair ← SATSolver .solve (CNFcoдnate ) do
4 if coдnatePair .totalCost < coдnateThreshold then

5 DR ← coдnatePair ; CNFcoдnate .update ();

6 end

7 end

8 CNFcoдnateSynonym ← constructCNFcoдnateSynonym (transдraph.DC ); /* following

Equation (12) */

9 while coдnateSynonymPair ← SATSolver .solve (CNFcoдnateSynonym ) do
10 if coдnateSynonymPair .totalCost < coдnateSynonymThreshold then

11 DR ← coдnateSynonymPair ; CNFcoдnateSynonym .update ();

12 end

13 end

14 end

15 return DR ;

16 Function calculateEdgeCost(transgraphs)
17 for each transдraph in transдraphs do
18 transдraph.DC ← дenerateCandidates (transдraph); /* generate trans. pair cand. */

19 for each t (wA
i ,w

C
k
) in transдraph.DC do

20 calculateCognatePairProb(t (wA
i ,w

C
k
)); /* using Algorithm 1 */

/* Cost of adding new edges are calculated from user selected heuristics

*/

21 if HSelections.coex is TRUE then t (wA
i ,w

C
k
).EdдeCost += 1 − t (wA

i ,w
C
k
).Hcoex ;

22 if HSelections.missCont is TRUE then t (wA
i ,w

C
k
).EdдeCost += t (wA

i ,w
C
k
).HmissCont ;

23 if HSelections.polysemy is TRUE then t (wA
i ,w

C
k
).EdдeCost += t (wA

i ,w
C
k
).Hpolysemy ;

24 if HSelections.formSim is TRUE then

t (wA
i ,w

C
k
).EdдeCost +=

(
1 − t (wA

i ,w
C
k
).Hf ormSim

)
/100;

25 for eachwA
i .outEdдes do

26 if e (wB
j ,w

C
k
) is not exist then t (wA

i ,w
C
k
).e (wB

j ,w
C
k
).Cost = t (wA

i ,w
C
k
).EdдeCost ;

27 end

28 for eachwC
i .inEdдes do

29 if e (wA
i ,w

B
j ) is exist then t (wA

i ,w
C
k
).e (wA

i ,w
B
j ).Cost = t (wA

i ,w
C
k
).EdдeCost ;

30 end

31 end

32 end

33 if maxCycle is not reached then

34 transдraphs ← addNewEdдes (); /* add new edges to transgraphs for the next

cycle */

35 calculateEdgeCost(transgraphs);

36 end

3838 return transдraphs
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Table 3. Variation of Constraint-based Bilingual Dictionary Induction

Cycle CNFcoдnate CNFcoдnate +CNFcoдnateSynonym CNFM−M
1 H11, H2, H3, H4, H12, ... H1, H2, H3, H4, H12, ... H12

>1 H1, H2, H3, H4, H12, ... H1, H2, H3, H4, H12, ... H13

1Identical to one-to-one approach [36] and Ω1 in our prior work [20].
2Identical to Ω2 in our prior work [20].
3For 2-cycle, identical to Ω3 in our prior work [20].

5.6 Framework Generalization

We define twomain CNF formulas; one for recognizing cognate pairs, that is,CNFcoдnate as shown
in Equation (11) and one for recognizing cognate synonym pairs, that is, CNFcoдnateSynonym
as shown in Equation (12). We also define another CNF formula, that is, CNFM−M as shown in
Equation (13), which extracts many-to-many translation pairs by ignoring uniqueness constraint
of the one-to-one approach [20]. Three constraints are shared by the CNF formulas: φ∞1 , φ

+
2 ,

and φ∞6 ,
CNFcoдnate = φ∞1 ∧ φ+2 ∧ φ∞3 ∧ φ∞4 ∧ φ∞5 ∧ φ∞6 , (11)

CNFcoдnateSynonym = φ∞1 ∧ φ+2 ∧ φ∞6 ∧ φ∞7 ∧ φ∞8 ∧ φ∞9 , (12)

CNFM−M = φ∞1 ∧ φ+2 ∧ φ∞3 ∧ φ∞5 ∧ φ∞6 . (13)

Various constraint-based bilingual dictionary induction methods can be constructed to suit dif-
ferent situations and purposes by using a cognate recognition (CNFcoдnate ) or a cognate & cognate
synonym recognition (CNFcoдnate +CNFcoдnateSynonym ) methods with a choice of n-cycle sym-
metry assumption, and with a series of individual and combined heuristics to be chosen as shown
in Table 3. We can also define many-to-many translation pair extraction method in our previous
work using CNFM−M . Thus, we define our methods using Backus Normal Form as follows:
〈situatedMethod〉 ::= 〈cycle〉” : ”〈method〉” : ”〈heuristic〉
〈cycle〉 ::= ”1”|”2”|”3”|”4”|”5”|”6”|”7”|”8”|”9”
〈method〉 ::= ”C”|”S”|”M”
〈heuristic〉 ::= ”H1”|”H2”|”H3”|”H4”|”H12”|”H13”|”H14”|”H23”|”H24”|”H123”|”H124”|”H234”

• cycle: symmetry assumption cycle where cycle ≥ 1.
• method: C as a cognate recognition (CNFcoдnate ) or S as a cognate & cognate synonym

recognition (CNFcoдnate +CNFcoдnateSynonym ) or M as a many-to-many approach (Ω2 &
Ω3) in our previous work [20].

• heuristic: an individual or combined heuristics where H1234means a combination of heuris-
tic 1 (cognate pair coexistence probability), heuristic 2 (missing contribution rate toward
cognate pair coexistence), heuristic 3 (polysemy pivot ambiguity rate), and heuristic 4 (cog-
nate form similarity).

A combination of cognate only (CNFcoдnate ) method with 1-cycle symmetry assumption and
heuristic 1 is defined as 1:C:H1, yielding an identical method with one-to-one approach [36] and
Ω1 in our prior work [20]. A combination of cognate only (CNFM−M ) method with heuristic 1
and 1-cycle symmetry assumption is defined as 1:M:H1, which is identical with Ω2 and for 2-cycle
symmetry assumption is defined as 2:M:H1, which is identical with Ω3 in our prior work [20].
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Table 4. Language Similarity of Input Dictionaries

Language Pair Language Similarity
min-ind, zlm-ind, min-zlm 69.14%, 87.70%, 61.66%
deu-eng, nld-eng, deu-nld 31.38%, 39.27% 51.17%
spa-eng, por-eng, spa-por 6.66%, 3.79%, 32.04%
deu-eng, ita-eng, deu-ita 31.38%, 9.75%, 13.64%

6 EXPERIMENT

To evaluate our result, we calculate precision, recall, and the harmonic mean of precision and recall
using the traditional F-measure or balanced F-score [23]. In each iteration, WPMaxSAT solver re-
turns the optimal translation pair result with minimum total cost (incurred by violating some soft
constraints). Translation pair result with total cost above the threshold are not considered. For the
methods equivalent with our prior work [20], which are 1:C:H1, 1:M:H1, and 2:M:H1, we do not set
any threshold. We try to analyze the impact of the threshold and the heuristics on the precision,
recall, and F-score. For this purpose, we need to have a Gold Standard, so for each experiment, we
can iterate threshold from 0 to the highest cost of constraint violation cost with 0.01 interval and
try every combination of heuristics as input to Algorithm 2 (as threshold & HSelections) while
observing the resulting precision, recall or F-score after evaluation against the gold standard. In
this article, we choose the result with the highest F-score. We want to analyze the algorithm so
our generalized constraint approach can be applied to other datasets for various languages. We
conduct experiments with six methods constructed from our generalized constraint approach in
which three of them yielding one-to-one translation pairs (1-1), that is, Cognates recognition with
all combination of heuristic and 1-cycle symmetry assumption (1:C:〈heuristic〉), 2-cycles symme-
try assumption (2:C:〈heuristic〉), and 3-cycles symmetry assumption (3:C:〈heuristic〉), and the rest
yielding many-to-many translation pairs (M-M), that is, Cognate and Cognate Synonyms recogni-
tion with all combination of heuristic and 1-cycle symmetry assumption (1:S:〈heuristic〉), 2-cycles
symmetry assumption (2:S:〈heuristic〉), and 3-cycles symmetry assumption (3:S:〈heuristic〉). As
baselines, we use three methods from our previous work where H1 is the sole heuristic used [20],
that is, one-to-one translation pair extraction (Ω1), which is defined as 1:C:H1; many-to-many
translation pair extraction from connected existing edges (Ω2), which is defined as 1:M:H1; and
many-to-many translation pair extraction from connected existing and new edges (Ω3), which is
defined as 2:M:H1. We also use the inverse consultation method (IC) and translation pairs gener-
ated from Cartesian product of input dictionaries (CP) as baselines.

6.1 Experimental Settings

We have four case studies; one of the closely related low-resource languages of the Austronesian
language family and three of the high-resource Indo-European languages. The language similari-
ties shown in Table 4 were computed using ASJP. We generate translation pairs from the Cartesian
Product within and across transgraph to be used in the evaluation as shown in Figure 12.
We selected the Indonesian ethnic languages Minangkabau (min) and Riau Mainland Malay

(zlm) with the Indonesian language (ind) as the pivot for our first case study (min-ind-zlm). Even
though Malaysian Malay (zlm) is not part of Indonesian ethnic languages, it is very similar to
Riau Mainland Malay. In fact, Riau Mainland Malay is one of the Malaysian Malay dialects [27].
Since there is no available machine-readable dictionary of Indonesian to Riau Mainland Malay,
we used the available machine-readable dictionary of Indonesian to Malaysian Malay (zlm) for
the case study min-ind-zlm. A trilingual Indonesian, Malaysian Malay, and Riau Mainland Malay
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Fig. 12. Example of extracting translation pair candidates from Cartesian Product (CP).

Fig. 13. Creating the gold standard for the high-resource case studies.

Table 5. Dictionaries for Evaluation

Source Number of Translation
Freedict deu-nld ∪ nld-deu = 35,962 spa-por = 333 deu-ita ∪ ita-deu = 6,152
Panlex deu-nld = 405,076 spa-por = 343,665 deu-ita = 475,461
Google Translate∗ deu-nld ∪ nld-deu = 1,924 spa-por ∪ por-spa = 1,338 deu-ita ∪ ita-deu = 1,790
TOTAL deu-nld = 406,370 spa-por = 344,126 deu-ita = 476,172

*Translating all headwords from CP within the transgraphs.

speaker thoroughly cleansed the dictionary by deleting or editing Malaysian Malay words that
are not present in the Riau Mainland Malay language. We generate full-matching translation pairs
(Cartesian product within transgraph from input dictionaries), verified by theMinangkabau-Malay
bilingual speaker via crowdsourcing, and took them as the gold standard for calculating precision
and recall.
The Proto-Indo-European language is the common ancestor of the Indo-European language

family from which the rest of our case-study languages originate. The second case study (deu-
eng-nld) targets high-resource languages of German (deu) and Dutch (nld) with English (eng) as
the pivot. The third case study (spa-eng-por) uses the Spanish (spa) and Portugese (por) languages
with English (eng) as the pivot. The fourth case study (deu-eng-ita) uses the German (deu) and
Italian (ita) languages with English (eng) as the pivot. We utilize Freedict, an open source online
bilingual dictionary database,1 as input dictionaries and combination of Freedict, Panlex, another
bilingual dictionary databases,2 and Google Translate3 as shown in Table 5 as dictionaries for
evaluation to create a gold standard. We use Google Translate to translate all headwords from
Cartesian Product (CP) within the transgraphs. The gold standard is obtained by intersecting
the combination of dictionaries for evaluation with CP across transgraph as shown in Figure 13.
The structure of the input dictionaries and the gold standard for every case studies can be found

1http://freedict.org.
2http://panlex.org.
3http://translate.google.com.
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Table 6. Structure of Input Dictionaries and Gold Standard

Case Study min-ind-zlm deu-eng-nld spa-eng-por deu-eng-ita
Language min ind zlm deu eng nld spa eng por deu eng ita
Headword 520 625 681 968 673 1,183 600 849 986 1,157 1,340 842
CP within transgraph 1,757 5,790 2,526 2,959
CP across transgraph 354,120 1,145,144 591,600 974,194
Gold Standard 1,246 1,438 1,069 1,503

Table 7. Translation Relationship of Input Dictionaries

Case Study Bilingual Dictionary
Translation Relationship

1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8

min-ind-zlm
min-ind 267 210 36 5 1 1 0 0
zlm-ind 563 115 3 0 0 0 0 0

deu-eng-nld
deu-eng 785 165 16 2 0 0 0 0
nld-eng 705 410 49 14 3 1 1 0

spa-eng-por
spa-eng 204 289 86 16 2 2 1 0
por-eng 458 370 116 33 7 2 0 0

deu-eng-ita
deu-eng 971 154 30 2 0 0 0 0
ita-eng 256 421 129 25 7 2 1 1

Table 8. Size of the Biggest Transgraph

Case Study (L1 − P − L2) L1 Words P Words L2 Words Edges
min-ind-zlm 8 14 18 39
deu-eng-nld 4,669 2,486 6,864 18,548
spa-eng-por 2,347 2,465 4,460 15,043
deu-eng-ita 650 822 597 2,242

in Table 6. The translation relationship of the input dictionaries varies from one-to-one until
one-to-eight as shown in Table 7. For the low-resource case study, that is, min-ind-zlm, the input
dictionaries only have few one-to-many translation relations compared to the high-resource
case studies. This shows that there are many potential missing senses in the input dictionaries.
Consequently, sometimes we can miss some translation pair candidates across the transgraphs.
Therefore, in this article, we limit our scope to extracting translation pairs within the transgraphs.
We do not discriminate both single-word and multi-words expressions in the input dictionaries.

After constructing the transgraphs from the input dictionaries, we find one big transgraph for each
high-resource language case study as shown in Table 8. Sometimes, for high-resource languages
where the input dictionaries have many shared meanings via the pivot words, a big transgraph
can be generated that potentially leads to a computational complexity when we formalize and
solve it. Nevertheless, for a low-resource language where we can expect that the input dictionaries
only have a few shared meanings via the pivot words, the size of the transgraph is feasible to be
formalized and solved. Therefore, for the sake of simplicity, we ignore any big transgraphs in these
experiments.
Different users are likely to have different motivations, priorities, and preferences when cre-

ating a bilingual dictionary. For high-resource languages, some users tend to prioritize precision
over recall while for low-resource languages, most users tend to prioritize recall to enrich the lan-
guage resource. In this article, we optimize the hyperparameters (cognate threshold and cognate
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synonym threshold) with a grid search by incrementing the cognate threshold from 0 to the high-
est cost of violating the constraints with 0.01 intervals and incrementing the cognate synonym
threshold from 0 to 1 with 0.01 intervals to find the highest F-score.

6.2 Experiment Result

In all experiments and all case studies, all transgraphs are fully symmetrically connected on the
third cycle, and thus all possible translation pair candidates are reached. To extract many-to-many
translation pairs, in the first step, that is, cognate recognition and the second step, that is, cognate
synonym recognition, the soft-constraint violation threshold is set to reject all translation pairs
returned by SATSolver that incurred a higher cost than the cognate threshold and cognate syn-
onym threshold as shown in Algorithm 2 line number 4 and 10, respectively. Even though using
the threshold to prioritize precision could yield the highest precision, the recall can be very low.
Similarly, even though using the threshold to prioritize recall could yield the highest recall, the
precision can also be harmed. Blindly prioritizing the precision over the recall or recall over the
precision might not be a good strategy when implementing the framework.

6.2.1 Threshold Yielding the Highest F-score. To obtain a good strategy when we want to im-
plement the framework, a balance between precision and recall is crucial. We calculate a harmonic
mean of precision and recall using the traditional F1-measure or balanced F1-score by weighting
the precision and recall equally. Based on user preference and priority, F0.5-score can be usedwhen
precision is considered more important, and F2-score can be used when recall is preferred. The re-
sults of all four case studies that targeted the threshold yielding the highest F-score are shown in
Table 9. For the case study min-ind-zlm, our best yielding M-M result method (2:S:H14) yields 0.4%
higher F-score than our previous best yielding M-M result method (2:M:H1), 3.4% higher F-score
than CP, and 12.9 times higher F-score than IC, while our best yielding 1-1 result method (3:C:H14)
yields 1.3% higher precision than our previous method (1:C:H1). The high F-score of the CP in the
case study min-ind-zlm indicates how very closely related the input languages are. For the case
study deu-eng-nld, our best yieldingM-M result method (1:S:H124) yields 0.2% higher F-score than
our previous best yielding M-M result method (1:M:H1), 46% higher F-score than CP, and 2.9 times
higher F-score than IC, while our best yielding 1-1 result method (3:C:H14) yields 5.5% higher
precision than our previous method (1:C:H1). For the case study spa-eng-por, our best yielding
M-M result method (1:S:H14) yields 0.6% higher F-score than our previous best yielding M-M re-
sult method (1:M:H1), 26.3% higher F-score than CP, and 27.3% higher F-score than IC, while our
best yielding 1-1 result method (3:C:H34) yields 3.6% higher precision than our previous method
(1:C:H1). For the case study deu-eng-ita, our best yielding M-M result method (1:S:H14) yields 0.2%
higher F-score than our previous best yielding M-M result method (1:M:H1), 30.7% higher F-score
than CP, and 3.2 times higher F-score than IC, while our best yielding 1-1 result method (3:C:H134)
yields 3.6% higher precision than our previous method (1:C:H1).
To enrich the bilingual dictionary result for low-resource languages, cognates and cognate syn-

onyms recognition with higher cycles is the best approach. The exact number of cycles can be
customized based on the priority and preference as regards the precision-recall tradeoff. The cog-
nates and cognate synonyms recognition with one-cycle is recommended for attaining the highest
F-score result, since for almost all case studies in our experiments except min-ind-zlm, it always
realized the highest F-score.
For the case study deu-eng-nld, the best one-to-one cognate (3:C:H14) method precision is unex-

pectedly low, 0.474, while the lower language similarity case studies (spa-eng-por and deu-eng-ita)
with the same cycle have higher precision (0.716 and 0.621, respectively). The case study deu-eng-
nld always yielded lower F-scores than case studies deu-eng-ita and spa-eng-porwhen themethods
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Table 9. Threshold Yielding the Highest F-score

Case Study Method Cognate Threshold Cognate Synonym Threshold Precision Recall F-score

min-ind-zlm

3:S:H14 (M-M) 4.79 1 0.656 0.998 0.792
2:S:H14 (M-M) 4.79 0.74 0.735 0.923 0.818
1:S:H14 (M-M) 4.17 1 0.836 0.713 0.770
3:C:H14 (1-1) 4.79 0.884 0.331 0.481
2:C:H14 (1-1) 4.79 0.884 0.331 0.481
1:C:H14 (1-1) 4.17 0.878 0.328 0.478
Baseline: 2:M:H1 (M-M) 0.713 0.953 0.815
Baseline: 1:M:H1 (M-M) 0.836 0.713 0.770
Baseline: 1:C:H1 (1-1) 0.873 0.327 0.475
Baseline: CP (M-M) 0.654 0.998 0.791
Baseline: IC (M-M) 0.950 0.031 0.059

deu-eng-nld

3:S:H14 (M-M) 1.97 1 0.230 0.926 0.368
2:S:H14 (M-M) 1.97 0.49 0.323 0.707 0.443
1:S:H124 (M-M) 4.1 0.99 0.400 0.820 0.537
3:C:H14 (1-1) 1.97 0.474 0.250 0.328
2:C:H14 (1-1) 1.97 0.474 0.250 0.328
1:C:H124 (1-1) 4.1 0.472 0.249 0.327
Baseline: 2:M:H1 (M-M) 0.257 0.919 0.402
Baseline: 1:M:H1 (M-M) 0.397 0.821 0.536
Baseline: 1:C:H1 (1-1) 0.447 0.238 0.311
Baseline: CP (M-M) 0.230 0.926 0.368
Baseline: IC (M-M) 0.612 0.078 0.138

spa-eng-por

3:S:H34 (M-M) 3.01 1 0.368 0.870 0.517
2:S:H34 (M-M) 3.01 0.49 0.467 0.751 0.576
1:S:H14 (M-M) 3.21 0.66 0.569 0.765 0.653
3:C:H34 (1-1) 3.01 0.716 0.367 0.486
2:C:H34 (1-1) 3.01 0.716 0.367 0.486
1:C:H14 (1-1) 3.21 0.717 0.367 0.486
Baseline: 2:M:H1 (M-M) 0.389 0.870 0.537
Baseline: 1:M:H1 (M-M) 0.538 0.818 0.649
Baseline: 1:C:H1 (1-1) 0.695 0.356 0.471
Baseline: CP (M-M) 0.368 0.870 0.517
Baseline: IC (M-M) 0.708 0.402 0.513

deu-eng-ita

3:S:H134 (M-M) 6.14 1 0.320 0.630 0.425
2:S:H134 (M-M) 6.14 0.85 0.477 0.534 0.504
1:S:H14 (M-M) 6.14 0.85 0.544 0.564 0.554
3:C:H134 (1-1) 6.14 0.621 0.310 0.413
2:C:H134 (1-1) 6.14 0.621 0.310 0.413
1:C:H14 (1-1) 6.14 0.626 0.310 0.415
Baseline: 2:M:H1 (M-M) 0.377 0.627 0.471
Baseline: 1:M:H1 (M-M) 0.542 0.565 0.553
Baseline: 1:C:H1 (1-1) 0.600 0.298 0.398
Baseline: CP (M-M) 0.320 0.630 0.424
Baseline: IC (M-M) 0.930 0.071 0.131

〈situatedMethod〉 ::= 〈cycle〉” : ”〈method〉” : ”〈heuristic〉where cycle: symmetry assumption cycle where cycle ≥ 1,method:
C as a cognate recognition (CN Fcoдnate ) or S as a cognate and cognate synonym recognition (CN Fcoдnate +

CN FcoдnateSynonym ) or M as a many-to-many approach (Ω2 and Ω3) in our previous work [20], heuristic: an indi-
vidual or combined heuristics where H1234 means a combination of heuristic 1 (cognate pair coexistence probability),
heuristic 2 (missing contribution rate toward cognate pair coexistence), heuristic 3 (polysemy pivot ambiguity rate), and
heuristic 4 (cognate form similarity). CP: Cartesian Product; IC: Inverse Consultation [31]; 1-1: one-to-one translation pair
results; M-M: many-to-many translation pair results;

that generate many-to-many results were applied. We believe that inadequacy of the gold stan-
dard was the cause of this counterintuitive result. For the case study deu-eng-nld, if we look at the
ratio of the size of the Cartesian product across transgraph in Table 6 and the size of the combined
dictionaries for evaluation in Table 5, relative to the ratio of the gold standard and the Cartesian
product within the transgraph, it is obvious that the ratio is inadequate compared to the other case
study languages.
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Table 10. Comparison of the Proposed Methods and the Previous Method: Case study min-ind-zlm

Comparison Transgraph
Previous Method Proposed Method

Precision Recall F-score Precision Diff. Recall Diff. F-score Diff.

1-1∗

0-24 0.92 0.548 0.687 0.92 0 0.548 0 0.687 0
25-40 0.813 0.542 0.65 0.813 0 0.542 0 0.65 0
41-56 0.813 0.52 0.634 0.875 +0.063 0.56 +0.04 0.683 +0.049
57-72 1 0.516 0.681 1 0 0.516 0 0.681 0
73-88 0.9 0.621 0.735 0.9 0 0.621 0 0.735 0
89-104 0.889 0.471 0.615 0.889 0 0.471 0 0.615 0
105-120 0.63 0.447 0.523 0.667 +0.037 0.474 +0.026 0.554 +0.031
121-136 0.552 0.533 0.542 0.552 0 0.533 0 0.542 0
137-152 0.828 0.5 0.623 0.862 +0.034 0.521 +0.021 0.649 +0.026
153-168 0.966 0.346 0.509 1 +0.034 0.358 +0.012 0.527 +0.018
169-184 1 0.352 0.52 1 0 0.352 0 0.52 0
185-200 1 0.34 0.508 1 0 0.34 0 0.508 0
201-216 0.975 0.312 0.473 0.975 0 0.312 0 0.473 0
217-232 0.889 0.294 0.442 0.889 0 0.294 0 0.442 0
233-248 0.866 0.179 0.296 0.878 +0.012 0.181 +0.003 0.301 +0.004

M-M∗∗

0-24 0.913 1 0.955 0.913 0 1 0 0.955 0
25-40 0.75 1 0.857 0.75 0 1 0 0.857 0
41-56 0.781 1 0.877 0.781 0 1 0 0.877 0
57-72 0.969 1 0.984 0.969 0 1 0 0.984 0
73-88 0.725 1 0.841 0.725 0 1 0 0.841 0
89-104 0.85 1 0.919 0.864 +0.014 1 0 0.927 +0.008
105-120 0.644 1 0.784 0.644 0 1 0 0.784 0
121-136 0.492 1 0.659 0.492 0 1 0 0.659 0
137-152 0.774 1 0.873 0.774 0 1 0 0.873 0
153-168 0.92 1 0.959 0.92 0 1 0 0.959 0
169-184 0.938 1 0.968 0.938 0 1 0 0.968 0
185-200 0.906 0.99 0.946 0.906 0 0.99 0 0.946 0
201-216 0.886 0.992 0.936 0.886 0 0.992 0 0.936 0
217-232 0.744 0.985 0.848 0.772 +0.028 0.949 −0.037 0.851 +0.003
233-248 0.544 0.864 0.667 0.544 0 0.864 0 0.667 0

*Comparison between the previous method (1:C:H1 / Ω1) [20] and the proposed method (2:C:H14) that yields one-to-one
translation pair results.
**Comparison between the previous method (2:M:H1 / Ω3) [20] and the proposed method (2:S:H14) that yields many-to-
many translation pair results.

6.2.2 Statistical Significant Test. To show that our proposed methods are statistically signifi-
cant compared to our previous methods [20], as listed in Tabless 10–13, for each case study, first,
we split the dataset into several datapoints (transgraphs), and then we compare the potentially
best methods yielding the most many-to-many translation pairs (M-M), that is, the 2:S:H14 to our
previous method that potentially yielding the most many-to-many translation pairs (M-M), that
is, 2:M:H1. We also compare the potentially best methods yielding the most one-to-one translation
pairs (1-1), that is, the 2:C:H14 to our previous method that yielding one-to-one translation pairs
(1-1), that is, 1:C:H1. Student’s paired t-test is a good statistical procedure used in Information
Retrieval research to determine whether the mean difference between two sets of observations is
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Table 11. Comparison of the Proposed Methods and the Previous Method: Case study deu-eng-nld

Comparison Transgraph
Previous Method Proposed Method

Precision Recall F-score Precision Diff. Recall Diff. F-score Diff.

1-1∗

0-16 0.529 0.9 0.667 0.588 +0.059 1 +0.1 0.741 +0.074
17-34 0.478 0.478 0.478 0.522 +0.043 0.522 +0.043 0.522 +0.043
35-52 0.594 0.463 0.521 0.594 0 0.463 0 0.521 0
53-70 0.286 0.25 0.267 0.286 0 0.25 0 0.267 0
71-88 0.406 0.271 0.325 0.5 +0.094 0.333 +0.063 0.4 +0.075
89-106 0.447 0.333 0.382 0.447 0 0.333 0 0.382 0
107-124 0.641 0.321 0.427 0.667 +0.026 0.333 +0.013 0.444 +0.017
125-142 0.455 0.235 0.31 0.455 0 0.235 0 0.31 0
143-160 0.439 0.22 0.293 0.512 +0.073 0.256 +0.037 0.341 +0.049
161-178 0.333 0.237 0.277 0.426 +0.093 0.303 +0.066 0.354 +0.077
179-196 0.526 0.265 0.353 0.517 −0.009 0.265 0 0.351 −0.002
197-214 0.435 0.195 0.269 0.435 0 0.195 0 0.269 0
215-232 0.408 0.228 0.293 0.38 −0.028 0.213 −0.016 0.273 −0.02
233-250 0.41 0.211 0.279 0.457 +0.047 0.23 +0.019 0.306 +0.027
251-268 0.446 0.135 0.208 0.485 +0.039 0.14 +0.004 0.217 +0.009

M-M∗∗

0-16 0.417 1 0.588 0.417 0 1 0 0.588 0
17-34 0.435 0.87 0.58 0.455 +0.02 0.87 0 0.597 +0.017
35-52 0.559 0.927 0.697 0.587 +0.028 0.902 −0.024 0.712 +0.014
53-70 0.329 0.844 0.474 0.329 0 0.844 0 0.474 0
71-88 0.392 0.833 0.533 0.392 0 0.833 0 0.533 0
89-106 0.349 0.882 0.5 0.366 +0.017 0.804 −0.078 0.503 +0.003
107-124 0.531 0.987 0.691 0.531 0 0.987 0 0.691 0
125-142 0.363 0.729 0.484 0.389 +0.026 0.659 −0.071 0.489 +0.005
143-160 0.371 0.915 0.528 0.371 0 0.915 0 0.528 0
161-178 0.274 0.961 0.427 0.304 +0.029 0.763 −0.197 0.434 +0.008
179-196 0.33 0.947 0.49 0.33 0 0.947 0 0.49 0
197-214 0.254 0.675 0.369 0.287 +0.033 0.643 −0.032 0.397 +0.027
215-232 0.224 0.898 0.358 0.271 +0.047 0.646 −0.252 0.381 +0.023
233-250 0.197 0.87 0.322 0.254 +0.056 0.671 −0.199 0.368 +0.046
251-268 0.199 0.849 0.323 0.301 +0.102 0.561 −0.288 0.392 +0.069

*Comparison between the previous method (1:C:H1 / Ω1) [20] and the proposed method (2:C:H14) that yields one-to-one
translation pair results.
**Comparison between the previous method (2:M:H1 / Ω3) [20] and the proposed method (2:S:H14) that yields many-to-
many translation pair results.

zero [28]. It is very useful to show that our proposed methods are truly better than our previous
methods rather than performed better by chance. In a student’s paired t-test, each subject or en-
tity is measured twice, resulting in pairs of observations. In this article, we use the same set of
datapoints and conduct the student’s paired t-test with precision and F-score as measures. Since
we expect that our proposed methods have improvement compared to our previous methods, we
choose a one-tailed t-test. There are two sets of null hypotheses (precision null hypotheses and F-
score null hypotheses), which are that the true precision or F-score means difference between the
proposed methods and our previous methods are equal to zero. We decide 0.05 cutoff value for de-
termining statistical significance that corresponds to a 5% (or less) chance of obtaining a result like
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Table 12. Comparison of the Proposed Methods and the Previous Method: Case Study spa-eng-por

Comparison Transgraph
Previous Method Proposed Method

Precision Recall F-score Precision Diff. Recall Diff. F-score Diff.

1-1∗

0-24 1 0.833 0.909 1 0 0.833 0 0.909 0
25-45 0.714 0.75 0.732 0.714 0 0.75 0 0.732 0
46-66 0.81 0.68 0.739 0.81 0 0.68 0 0.739 0
67-87 0.762 0.421 0.542 0.762 0 0.421 0 0.542 0
88-108 0.667 0.467 0.549 0.714 +0.048 0.5 +0.033 0.588 +0.039
109-129 0.762 0.471 0.582 0.81 +0.048 0.5 +0.029 0.618 +0.036
130-150 0.64 0.364 0.464 0.68 +0.04 0.386 +0.023 0.493 +0.029
151-171 0.724 0.382 0.5 0.69 −0.034 0.364 −0.018 0.476 −0.024
172-192 0.9 0.351 0.505 0.9 0 0.351 0 0.505 0
193-213 0.6 0.296 0.397 0.6 0 0.296 0 0.397 0
214-234 0.61 0.212 0.314 0.585 −0.024 0.203 −0.008 0.302 −0.013
235-255 0.587 0.287 0.386 0.63 +0.043 0.309 +0.021 0.414 +0.029
256-276 0.577 0.288 0.385 0.615 +0.038 0.308 +0.019 0.41 +0.026
277-297 0.678 0.276 0.392 0.712 +0.034 0.29 +0.014 0.412 +0.02
298-318 0.708 0.221 0.337 0.74 +0.031 0.231 +0.01 0.352 +0.015

M-M∗∗

0-24 1 0.833 0.909 1 0 0.833 0 0.909 0
25-45 0.714 0.75 0.732 0.714 0 0.75 0 0.732 0
46-66 0.75 0.84 0.792 0.75 0 0.84 0 0.792 0
67-87 0.667 0.737 0.7 0.667 0 0.737 0 0.7 0
88-108 0.585 0.8 0.676 0.585 0 0.8 0 0.676 0
109-129 0.596 0.824 0.691 0.596 0 0.824 0 0.691 0
130-150 0.667 0.909 0.769 0.678 +0.011 0.909 0 0.777 +0.007
151-171 0.632 0.782 0.699 0.646 +0.014 0.764 −0.018 0.7 +0.001
172-192 0.663 0.766 0.711 0.663 0 0.766 0 0.711 0
193-213 0.46 0.704 0.556 0.46 0 0.704 0 0.556 0
214-234 0.438 0.534 0.481 0.458 +0.021 0.508 −0.025 0.482 +0.001
235-255 0.433 0.83 0.569 0.433 0 0.83 0 0.569 0
256-276 0.359 0.817 0.499 0.359 0 0.817 0 0.499 0
277-297 0.36 0.862 0.508 0.433 +0.073 0.697 −0.166 0.534 +0.026
298-318 0.255 0.779 0.384 0.359 +0.104 0.59 −0.189 0.446 +0.062

*Comparison between the previous method (1:C:H1 / Ω1) [20] and the proposed method (2:C:H14) that yields one-to-one
translation pair results.
**Comparison between the previous method (2:M:H1 / Ω3) [20] and the proposed method (2:S:H14) that yields many-to-
many translation pair results.

the one that was observed if the null hypotheses were true. For all case studies min-ind-zlm, deu-
eng-nld, spa-eng-por, and deu-eng-ita, we reject the precision null hypotheses, since the p-value
of the tests are 0.00732, 0.00007, 0.00398, 0.00464, respectively, which are all smaller than 0.05. For
all case studies min-ind-zlm, deu-eng-nld, spa-eng-por, and deu-eng-ita, we also reject the F-score
null hypotheses, since the p-value of the tests are 0.01673, 0.00034, 0.00652, and 0.00783, respec-
tively, which are all smaller than 0.05. Thus, our proposed methods have statistically significant
improvement of precision and F-score compared to our previous methods.

6.2.3 Hyperparameter Optimization. We have shown that our methods outperformed the base-
lines in the previous sections. Nevertheless, before implementing our model in a big scale, we
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Table 13. Comparison of the Proposed Methods and the Previous Method: Case study deu-eng-ita

Comparison Transgraph
Previous Method Proposed Method

Precision Recall F-score Precision Diff. Recall Diff. F-score Diff.

1-1∗

0-34 0.943 0.367 0.528 0.943 0 0.367 0 0.528 0
35-64 0.633 0.235 0.342 0.7 +0.067 0.259 +0.025 0.378 +0.036
65-94 0.7 0.3 0.42 0.667 −0.033 0.286 −0.014 0.4 −0.02
95-124 0.533 0.246 0.337 0.667 +0.133 0.308 +0.062 0.421 +0.084
125-154 0.667 0.274 0.388 0.667 0 0.274 0 0.388 0
155-184 0.5 0.167 0.25 0.533 +0.033 0.178 +0.011 0.267 +0.017
185-214 0.567 0.23 0.327 0.633 +0.067 0.257 +0.027 0.365 +0.038
215-244 0.646 0.316 0.425 0.667 +0.021 0.327 +0.01 0.438 +0.014
245-274 0.694 0.256 0.374 0.673 −0.02 0.248 −0.008 0.363 −0.011
275-304 0.689 0.341 0.456 0.711 +0.022 0.352 +0.011 0.471 +0.015
305-334 0.556 0.197 0.291 0.587 +0.031 0.213 +0.016 0.312 +0.021
335-364 0.561 0.182 0.275 0.542 −0.019 0.182 0 0.272 −0.002
365-394 0.54 0.177 0.267 0.556 +0.016 0.182 +0.005 0.275 +0.008
395-424 0.519 0.169 0.256 0.532 +0.013 0.174 +0.004 0.262 +0.006
425-454 0.544 0.184 0.275 0.562 +0.017 0.189 +0.005 0.283 +0.007

M-M∗∗

0-34 0.946 0.389 0.551 0.946 0 0.389 0 0.551 0
35-64 0.672 0.481 0.561 0.672 0 0.481 0 0.561 0
65-94 0.627 0.529 0.574 0.627 0 0.529 0 0.574 0
95-124 0.593 0.538 0.565 0.593 0 0.538 0 0.565 0
125-154 0.61 0.493 0.545 0.61 0 0.493 0 0.545 0
155-184 0.583 0.389 0.467 0.583 0 0.389 0 0.467 0
185-214 0.633 0.514 0.567 0.633 0 0.514 0 0.567 0
215-244 0.515 0.52 0.518 0.515 0 0.52 0 0.518 0
245-274 0.535 0.406 0.462 0.535 0 0.406 0 0.462 0
275-304 0.455 0.549 0.498 0.455 0 0.549 0 0.498 0
305-334 0.444 0.441 0.443 0.444 0 0.441 0 0.443 0
335-364 0.407 0.409 0.408 0.419 +0.012 0.398 −0.011 0.408 0
365-394 0.367 0.438 0.399 0.401 +0.034 0.422 −0.016 0.411 +0.012
395-424 0.331 0.462 0.386 0.379 +0.048 0.419 −0.042 0.398 +0.013
425-454 0.226 0.488 0.309 0.339 +0.112 0.336 −0.152 0.338 +0.028

*Comparison between the previous method (1:C:H1 / Ω1) [20] and the proposed method (2:C:H14) that yields one-to-one
translation pair results.
**Comparison between the previous method (2:M:H1 / Ω3) [20] and the proposed method (2:S:H14) that yields many-to-
many translation pair results.

need to validate how good our model perform in practice with unknown data. Since there are not
enough data available to partition it into separate training and test sets without losing significant
modelling or testing capability, a good way to properly estimate model prediction performance is
to use cross-validation as a powerful general technique. Due to the computational complexity of
our model, we conduct threefold cross-validation to predict the optimal hyperparameters (cognate
threshold and cognate synonym threshold) to gain the highest F-score as shown in Table 14. We
optimize the hyperparameters with a grid search by incrementing the cognate threshold from 0
to the highest cost of violating the constraints with 0.01 intervals and incrementing the cognate
synonym threshold from 0 to 1 with 0.01 intervals to find the highest F-score. We choose the same
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Table 14. Cognate Threshold and Cognate Synonym Threshold Optimization

Case Study Method Validation Set
Optimal Threshold Testing on Unknown Data

Cognate Cognate Synonym Test Set Precision Recall F-score Mean F-score

min-ind-zlm

2CH14
0-82, 83-165 1.35 - 166-248 0.933 0.257 0.403

0.5590-82, 166-248 4.79 - 83-165 0.786 0.471 0.589
83-165, 166-248 4.79 - 0-82 0.916 0.547 0.685

2SH14
0-82, 83-165 1.99 1 166-248 0.688 0.933 0.792

0.8530-82, 166-248 4.79 0.26 83-165 0.729 1 0.843
83-165, 166-248 4.79 0.26 0-82 0.858 1 0.924

deu-eng-nld

2CH14
0-90, 91-179 1.85 - 180-268 0.467 0.185 0.265

0.3590-90, 180-268 1.97 - 91-179 0.493 0.285 0.361
91-179, 180-268 1.97 - 0-90 0.485 0.423 0.452

2SH14
0-90, 91-179 1.85 1 180-268 0.219 0.86 0.35

0.4740-90, 180-268 1.97 0.51 91-179 0.361 0.893 0.514
91-179, 180-268 1.97 0.51 0-90 0.41 0.878 0.559

spa-eng-por

2CH14
0-106, 107-212 2.96 - 213-318 0.676 0.268 0.384

0.5250-106, 213-318 3.21 - 107-212 0.724 0.366 0.486
107-212, 213-318 3.21 - 0-106 0.804 0.628 0.705

2SH14
0-106, 107-212 2.96 0.51 213-318 0.394 0.636 0.487

0.6390-106, 213-318 3.21 0.51 107-212 0.603 0.756 0.671
107-212, 213-318 3.21 0.51 0-106 0.719 0.803 0.759

deu-eng-ita

2CH14
0-150, 151-302 1.5 - 303-454 0.557 0.202 0.297

0.3710-150, 303-454 6.14 - 151-302 0.652 0.279 0.391
151-302, 303-454 6.14 - 0-150 0.735 0.3 0.426

2SH14
0-150, 151-302 1.5 0.01 303-454 0.341 0.414 0.374

0.4790-150, 303-454 6.14 0.56 151-302 0.531 0.481 0.505
151-302, 303-454 6.14 0.56 0-150 0.67 0.478 0.558

methods as in Tables 10–13, the potentially best methods yielding the most one-to-one translation
pairs (1-1), that is, the 2:C:H14 and the potentially best methods yielding the most many-to-many
translation pairs (M-M), that is, the 2:S:H14. For all case studies, the mean F-score approaches the
mean F-score of the overfitting model in Tables 10–13.

7 CONCLUSION

Our strategy to create high-quality many-to-many translation pairs between closely related lan-
guages consists of two steps. We first recognize cognates from direct and indirect connectivity via
pivot word(s) by iterating multiple symmetry assumption cycles to reach more cognates in the
transgraph. Once we obtain a list of cognates, the next step identifies synonyms of those cognates.
The result of case studies showed that our method offers good performance on weakly related

high-resource languages. Thus, our method has the potential to complement other bilingual dic-
tionary creation methods like word alignment models using parallel corpora. Our method shows
particularly high performance on the closely related low-resource language case study. Our pro-
posed methods have statistically significant improvement of precision and F-score compared to
our previous methods in spite of sacrificing the recall a little bit.
Our key research contribution is a generalized constraint-based bilingual lexicon induction

framework for closely related low-resource languages. This generalization makes our method ap-
plicable for a wider range of language groups than the one-to-one approach. Our customizable
approach allows the user to conduct cross validation to predict the optimal hyperparameters (cog-
nate threshold and cognate synonym threshold) with various combination of heuristics and num-
ber of symmetry assumption cycles to gain the highest F-score. To the best of our knowledge, our
study is the first attempt to recognize both cognates and cognate synonyms in bilingual lexicon
induction.
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