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Abstract: This paper aims at optimising the processing parameters for the
production of electrically conductive polypropylene/graphite composite plates.
The composites were prepared by melt compounding using internal mixer and
the plates were produced by compression moulding. The effect of processing
parameters on conductivity at different graphite contents were optimised using
design of experiments based on a cross-mixed method. The results showed a
significant dependence of the conductivity values on the processing parameters.
The highest value of in-plane conductivity resulted from simulations was
86.83 S/cm and it was achieved at a mixing time of 57.95 min, a mixing speed
of 105.8 rpm, a compression moulding time of 157.89's, and a pressure of
48.24 bar. Slightly higher value of about 91 S/cm was experimentally obtained.
The distribution of graphite particles and the porosity on the surfaces of plates
were also examined.

Keywords: in-plane electrical conductivity; processing parameters; PP/SG
composite plates; melt mixing; compression moulding; design of experiments.
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1 Introduction

The use of conductive polymer composites (CPCs) is very promising in engineering
applications (Sabu et al., 2014). Their processing methods and properties of their
products are an active research field. One important application where the CPCs have
been intensively used is the bipolar plate in polymer electrolyte membrane (PEM) fuel
cells (Allen et al., 2005). Bipolar plates have used as an alternative for metallic and
traditional graphite plates in PEM fuel cells (Davies et al., 2000). The bipolar plate is
used to separate each cell in the PEM stack, collect current, carry water out from each
cell and humidify gas. The materials suggested for manufacturing bipolar plates must
achieve high chemical and corrosive resistance, low cost and easy manufacturing
processes, good electrical and thermal conductance, gas impermeabilities and good
strength-to-weight performance. For bipolar plates, the in-plane electrical conductivity
was restricted by the US Department of Energy to a minimum value of 100 S/cm (Xiao
et al., 2005).

Generally, carbon-based CPCs have occupied a great interest in several engineering
applications (Wei et al., 2007) and more specifically, in the application of bipolar plate in
PEM fuel cells (Ehsan et al., 2013; Dweiri, 2015; Grundler et al., 2010; Ghosh and
Verma, 2014; Xiqiang et al., 2006; Adjima and Jantrawan, 2008). Many issues have been
investigated by researchers in the literature regarding to the use of carbon-based CPCs for
bipolar plate. Using single and multi-conductive fillers such as graphite (G), carbon black
(CB), carbon fibres (CF) were found as an effective way to improve processibility and
performance of CBCs (Dweiri and Sahari, 2007; Suherman et al., 2014; Dweiri and
Jaafar, 2007). Influence of graphite particle size and its shape on the performance of
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carbon composite bipolar plates has also been investigated (Zhang et al., 2005; Dweiri,
2012). Intensive studies on the conventional methods such as compression and injection
moulding showed that these methods are cost effective and produce net-shaped bipolar
plates (Mighri et al., 2004; Miiller et al., 2006; Devaraj, 2009; Cunningham and Baird,
2006; Dhakate et al., 2007).

The preparation of composites prior to compression and injection moulding and the
effect of processing parameters on the mechanical and conductive properties of CPCs
have attracted the attention of many researchers (Suherman et al., 2015; Carneiro et al.,
2012; Raghavan et al., 2016; Dweiri and Sahari, 2010). Researchers have used melt
or solution mixing techniques for preparation of CPCs. The solution mixing is
environmentally harmful because of the use of solvents while the melt mixing is not and
economically viable. Melt mixing was usually carried out by the use of internal mixers
and many issues regarding to this technique had been highlighted by the researchers such
as homogenisation of the composites and understanding the effect of processing
parameters such as mixing time, rotating speed and mixing temperature on composite
properties. Similar to melt mixing, compression moulding processing parameters
involving compression moulding duration, pressure value and temperature are also play a
main role in determining the final properties of the product. It is worth to mention that to
improve the conduction properties of composites, the conductive fillers are to be
dispersed uniformly throughout the polymer matrix. This can be achieved by sufficiently
mixing the composites that means severe and long-time mixing parameters (Wei et al.,
2007). Most studies focused on a short-time mixing within the range of 10-30 min and no
studies are found for longer melt mixing duration.

This work aims at optimising the processing parameters of melt mixing and
compression moulding for the production of electrically conductive PP/SG composite
plates. Design of experiments based on a cross-mixed method was utilised for the
purpose of optimisation. Mixing for long time of 50—120 min was carried out while there
were no investigations on temperature effect. The high filling load of 60-90 wt.% SG
was implemented in an attempt to meet the target of US Department of Energy of
100 S/cm in-plane electrical conductivity for bipolar plate in PEM fuel cells.

2 Experimental

2.1 Materials

Synthetic flaky graphite particles (SG) with a density of 1.74 g/em® and an electrical
resistivity of 1200 x 10°°Q cm had been used in this study. It had a particle size
distribution ranging between 10 and 200 pm and it was supplied by GME Carbon Sdn.
Bhd., Malaysia. Polypropylene (PP) grade Titan (600) had a density of 910 kg/m’, melt
flow index of 10 g/10 min, a melting point of 160°C and it was supplied by
Polypropylene Malaysia Sdn. Bhd.

2.2 Fabrication of the composite plates

Melt compounding of PP and SG are carried out at different compositions and processing
parameters. The SG particles were mixed manually with PP at weight ratios (PP/SG) of
(40/60), (25/75) and (10/90). The mixtures were then melt compounded using a Thermo
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Haake mixer Roller type Rotors R600 with a 50 ml intensive batch mixer at a
temperature of 175°C. Different values of rotational speed and mixing time were applied.
The melt compounded composites were crushed and placed into a mould which had been
preheated in a hot press machine for 10 min without pressure. The composite plates were
then hot pressed into disk samples of 100 mm diameter and 2 mm thickness at a
temperature of 200°C and different values of pressure and compression moulding time.
Figure 1 shows a photo of the compounded PP/60 wt.%SG composite at the end of
mixing process after opening the die. The change of torque and actual temperature during
mixing time at a rotating speed of 50 rpm is also shown in Figure 1. At the beginning of
mixing, the torque rapidly increases and falls down before it starts gradually decreasing.
The actual temperature in mixing chamber raises up to 182°C.

Figure 1 The photo of compounding PP/60 wt.%SG composite and the change of torque and
actual temperature with mixing time during mixing process (see online version
for colours)
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2.3 Design of experiment

The composite material composition and processing parameters for the compression-
moulded plates were optimised by design of experiment (DOE) based on cross-mixed
method using computer software namely ‘Design Expert® 6° (Stat-Ease). Table 1
indicates the input data for performing the simulation and it represents the factors that
influencing the electrical conductivity of the composites, their symbols and the values
range being selected. The DoEs based on cross-mixed method is involving components
with several variables and applying an equation in the form of centroid simplex model
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(equation (1)) combined with 2" factorial model (equation (2) to produce the optimum
response (equation (3) (Montgomery, 2001; Cornell, 2002).

q 9. 49
Y=Y B+ Boxx A oy XX, X, +E, ()
i=1 i=l i<j

where x; is the component mixture with i =1, 2, ..., g; fis the mixing coefficient and £1is
the standard error.

n n n
y(2)=¢, +Za/2/ +2205,mz/zm +otay,... 2z, ...2, TE, 2)
=

I=1 I<m

where z; is the variable process with /=1, 2,...,n; « is the factorial denominator
coefficient; and £is the standard error.

q n
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i=l =
9 q 0 n s
+ZZ[%;+Z7/,-,-21+'--+ i,.“‘"lez---Zn}xfxi (3)
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0 C 2..n
+- +|:}/l2q + Zyllluqzl ++ }/112...qu22 "'Zn:|xlx2 ""xq +€’
I=1
where yis the combination denominator coefficient. ¢ and n were adjusted to ¢ =2 and
n =2 in this study.

Table 1 Factors affecting the in-plane electrical conductivity of the composites and their
selected values which was used for DOE

Symbol Unit Selected values

Composite Graphite SG wt.% 60, 75, 90
components  py1ynropylene PP wt.% 40,25, 10
Processing Mixing time MT min 50, 120
variables Mixing speed MS rpm 50,110

Compression moulding time PT sec 155, 220

Pressure value PV bar 30, 50
Response Conductivity CON S/em -

2.4 Characterisation of composite plates

In-plane electrical conductivity of the plates was measured by means of a Jandel Multi-
Height Four-Point Probe combined with RM3 Test Unit which had a constant current
source and a digital voltmeter designed especially for the four-point probe measurement.
This technique measured sheet resistance in the range from 1 mQ/sq up to 5 x 10® Q/sq
and volume resistivity ranges from 107 to 10° Q cm. The system accuracy was within
0.3%. No electrodes used for DC measurements. The electrical resistivity, p, of the
samples can be calculated according to the formula:
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V
p_z;stF, (4)

where s = 1 mm is the probe spacing, / is the input current through the outer two tips, V' is
the voltage drop across the inner two probes and F' is the correction factor based on the
ratio of sample thickness to probe spacing. This test met specifications of ASTM F 84-99
Standard.

The morphology of the surfaces of the plates and the distribution of SG particles on
surfaces was examined using Leo 1450 Scanning Electron Microscopy Energy
Depressive X-Ray Spectroscopy (SEM-EDX) instrument (High-Tech Company). The
porosity measurements were performed using a Thermo Finnigan Pascal 140 series
mercury porosimeter. The surfaces of the plates were polished with a fine emery paper to
remove the slip layer of the binder prior tests.

3 Results and discussion

3.1 Results of design of experiments

Initial DOE analysis using the input data shown in Table 1 was carried out and 41
different samples at different processing parameters and their resulting in-plane
conductivities are shown in Table 2. The data shown in Figure 2 were explored from
Table 2 to further clarify the effect of each processing parameter on the electrical
conductivity of the composites. The effect of mixing time and rotating speed,
compression moulding time and pressure were examined. The reference samples of 60,
75 and 90 wt.% SG were produced at MT = 120 min, MS = 110 rpm, PT =220 s and
PV =50 bar. The results are represented in Figure 2 as the relationship of in-plane
electrical conductivity vs. SG content. In general, the values of conductivity increase with
the increase in filler loading regardless of the processing parameters. Figure 2(a) shows
that the increase in mixing time results in a decrease in conductivity values for all types
of composites. Researchers (Kalyon and Birinci, 2002) reported that the increase of
mixing time increases the specific energy input generated during the mixing process
which causes better coating of the binder to the SG particles, thus the formation of
conductive network is hindered and electrical conductivity decreases. This effect is less
pronounced as SG content increases in the composites due to the decrease of the binder
amount coated the graphite particles. A reduction in the values of conductivity of the
composite plates was also noticed by increasing the compression moulding time from 155
to 220 s (Figure 2(b)) and by increasing the compression pressure value from 30 to 50 bar
(Figure 2(c)). It is known from the previous studies that the electrical conductivity
increases as a result of the increase in compactness of filler particles in the polymer
matrix with increase in moulding pressure (Das, 2002). In the pressure range selected
here, opposite trend was observed and the increase of compression moulding time and
pressure may elevate specific energy of a mixture and pushing the binder to the sample
surface, and hence reducing conductivity. Figure 2(d) shows that the increase in rotating
speed has less effective impact on electrical conductivity and literature reported that,
with increasing rotating speed, the SG particles and agglomerates are subjected to more
shearing action leading to appreciable breakdown of the conductive network, and hence
the conductivity of the composite decreases. Furthermore, increase of rotating speed
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causes a temperature rise of the matrix, so that its viscosity decreases and as a result the
shearing force decreases. Finally, it was noticed from DOE that composites containing
75 wt.% SG were less affected with processing parameters compared to those having 60
and 90 wt.%.

Figure 2  Effect of: (a) mixing time; (b) compression moulding time; (c) pressure value and
(d) mixing speed on the conductivity of composite plates at different SG contents
obtained from DOE results
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The previous simulations showed that a maximum in-plane electrical conductivity value
of 72.22 S/cm was reported for PP/90 wt.%SG composites and this value was obtained at
MT = 120 min, MS = 110 rpm, PT =155 s and PV =30 bar. For further optimising the
electrical conductivity, a second running of the DOE was carried out for PP/90 wt.%SG
and the mixing time, MT, was left to change from 50 min to 120 min, MS from 50 min to
120 rpm, PT ranging between 155 s and 220 s and PV from 30 bar to 50 bar. The results
of simulations are shown in Table 3. It is noticed from Table 3 that the highest value of
in-plane conductivity was 86.83 S/cm and it was achieved at MT = 57.95 min,
MS =105.8 rpm, PT = 157.89 s and PV = 48.24 bar. Therefore, at a high rotating speed
the two conflict effects, which mentioned earlier, may counterbalance each other
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(Das, 2002). By noting the change of the processing parameters all together, the
judgement on increasing and decreasing of conductivity is quite different, e.g., the low
mixing time, high rotating speed, low compression time and high pressure value results in
high electrical conductivity value. Finally, the a composite plate of PP/90 wt.%SG was
experimentally produced at the optimised parameters and its in-plane electrical
conductivity value was found to be 91.27 S/cm. This value was slightly higher than that
obtained using DOE but it could be concluded that there is a good agreement between the
predicted and experimental value. Comparing the results obtained in this study with the
previous studies (Lawrance, 1980) reported a value of in-plane conductivity about
119 S/em for poly(vinylidene fluoride)/80 wt.% graphite. Wilson and Busick (2001)
reported a value of 61 S/cm for vinyl ester/68 wt.% graphite and Dweiri and Sahari
(2007) reported a value of less than 10 S/cm for PP/80 wt.% SG composites.

Table 2 Initial DOE running results and the input data are shown in Table 1
Components Processing parameters Response

SG PP MT MS PT PV CON
Sample  (Wt.%) (Wt.%) (Min) (rpm) (s) (bar) (S/cm)
1 90 10 120 50 155 50 27.47
2 75 25 50 50 220 30 1.5
3 75 25 50 110 220 30 1.07
4 75 25 50 110 155 30 1.481
5 90 10 50 50 220 50 41.1
6 60 40 120 50 220 50 3.07x10°
7 75 25 120 110 220 50 1.55
8 75 25 120 110 155 30 0.94
9 90 10 50 110 220 30 19.67
10 90 10 120 50 155 30 324
11 90 10 120 110 220 50 18.05
12 90 10 120 110 220 30 47.69
13 90 10 50 110 220 30 35.1
14 90 10 50 110 155 30 22.07
15 75 25 120 50 220 50 0.753
16 75 25 50 50 220 50 1.52
17 90 10 50 50 220 50 41.1
18 60 40 50 50 155 50 5.80x10°
19 60 40 50 110 220 50 0.06
20 90 10 50 50 220 30 48.14
21 90 10 120 50 220 50 31.99
22 90 10 50 110 220 50 61.65

N
w

75 25 50 50 155 50 2.53
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Table 2 Initial DOE running results and the input data are shown in Table 1 (continued)
Components Processing parameters Response

SG PP MT MS PT PV CON

Sample  (wt.%)  (Wt.%) (Min) (rpm) (s) (bar) (S/em)

24 60 40 50 50 220 30 0.143

25 60 40 120 110 155 50 0.39

26 90 10 120 110 155 30 72.22

27 75 25 120 50 220 30 0.86

28 60 40 120 110 220 30 2.61x 107

29 75 25 120 50 155 30 0.481

30 75 25 120 110 155 50 2.34

31 90 10 50 50 155 50 44.74

32 60 40 120 110 220 50 3.60x 107

33 75 25 50 110 155 50 2.61

34 60 40 120 50 155 30 7.02x 107

35 75 25 120 110 220 30 1.88

36 75 25 120 110 220 30 1.68

37 75 25 50 50 155 30 1.48

38 90 10 50 50 155 30 20.38

39 75 25 50 110 220 50 2.77

40 75 25 120 50 155 50 0.75

41 90 10 120 110 155 50 50.55

3.2 Porosity measurements and morphological observations

Porosity is one of the factors that affecting the electrical conductivity of the composites.
Figure 3(a)—(c) shows the results of porosity measurements of three different samples.
The pore size distribution of all samples was approximately ranging from 5 to 100 pum.
The relative volume porosity for (40/60), (25/75) and (10/90)wt.% PP/SG was in the
range of 0.15-0.75%, 0.05-0.65% and 0.0-0.65% and their total porosities were 1.037%,
1.282% and 1.77%, respectively. Figure 3(d) shows the average pore size which
decreases by increasing SG content and values of 10.6, 6.01 and 5.48 pm were estimated
for (40/60), (25/75) and (10/90)wt.% PP/SG composites, respectively. The decrease of
the degree of porosity and the pore size causes lower distance between particles, and
hence enhancing the electrical conductivity. Gautam and Kar (2015) stated that, at high
nanocarbon black content in phenolic matrix, the carbon particles got agglomerated,
which developed closed porosity in the composites and this causes an increase in the
porosity.

The SEM micrographs of the surfaces of PP/SG composite plates consist of 60, 75
and 90 wt.% SG and their EDX mapping are illustrated in Figure 4 and the SG particle
distribution is shown on the surface. In general, the SG particles are not uniformly



Effect of processing parameters on electrical properties 21
distributed within the polymer matrix and agglomeration of particles is found on the
surfaces shown in Figure 4(a)—(c). The tendency of the SG agglomerates to form
conductive paths on the polymer matrix is increased as SG content increases and these
agglomerates are better distributed in PP having 90 wt.% SG. Moreover, less particle-to-
particle contacts could be attributed to lower the electrical conductivity of the composite
plates.

Table 3 In-plane conductivity readings and the predicted processing parameters for
PP/90wt.%SG composite obtained from DOE (second running)
Components Processing variables Response
SG PP MT MS PT PV CON
wt.%)  (wt.%)  (min) (rpm) (s) (bar) (S/cm)
1 90 10 60.33 99.57  159.32 49.2 81.78
2 90 10 57.95 105.8 157.89  48.24 86.83 Maximum
3 90 10 50 84.81 182.29 50 66.09
4 90 10 120 110 193.77  31.75 52.93
5 90 10 86.99 10542 155 37.12 49.16
6 90 10 82.77 66.3 155 49.99 47.94
7 90 10 87.58 59.17 2133 30 37.04
8 90 10 82.32 75.64 21394  30.01 36.74

Figure 3 The pore size distribution of PP/SG composite plates at: (a) 60wt.% SG; (b) 75wt.%
SG; (c) 90wt.% SG and (d) the average pore size vs. SG content (see online version
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Figure 4 SEM micrographs of the surfaces of the composite plates and SG particles distribution
at: (a) 60wt.% SG; (b) 75wt.% SG and (c) 90wt.% SG (see online version for colours)

4 Conclusions

A better understanding of the effect of processing parameters on the in-plane electrical
conductivity of PP/SG composites was explored by using DOE and experimental
investigations. The DOE results showed that the increase of mixing time and speed,
compression time and pressure resulted in a decrease of the in-plane conductivity of the
composites. Further DOE simulations for composites containing 90 wt.% SG showed that
a combination of low mixing time and high mixing speed, and a low compression time
and a high pressure produced the optimum value of conductivity, 86.83 S/cm. This value
was in a good agreement with the experimental conductivity value of PP/90 wt.%SG
composite which was found about 91 S/cm. Porosity of composite plates was found to
increase with increasing SG content while the average pore size decreased. Morphology
of the composite plates showed a tendency of the SG to agglomerate and at 90 wt.%, the
agglomerates tended to form a better conductive paths in PP matrix. These values of
conductivities at high filler content are still not competitive for applications of bipolar
plate in fuel PEM fuel cells due to their difficulty of manufacturing and the expected
degradation in mechanical properties.
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