

The 7th International Conference on Informatics and Computing (ICIC) 2022



## ICIC 2022 PROGRAM BOOK

8 - 9 DECEMBER 2022

## Welcome Message from APTIKOM Chairman



## Assalamualaikum warahmatullahi wabarakatuh

A new life style is here. Landscape of things are changed. Technology of industrial revolution 4.0 and Covid-19 become the triggering factors to radical changes. Everything is converted to data. Systems of automation proliferate to profit from the digital age. The workforce landscape shifted as well, moving from traditional workforces to digital workforces. In order to take advantage of and respond to the opportunities and challenges in this disruptive environment, more digital skill sets are required.

The skillset required for the workforce in Indonesia is shown and discussed in ICIC 2022, along with how these landscapes of things and workforces are changing. Our educational systems require a drastic reform. In addition, data driven by business should be established to enhance performances. We must hasten the digital revolution in order to thrive and obtain a competitive advantage. All those issues become the main reason of ICIC 2022 choose the theme of this year conference "Driving Digital Transformation Toward Society 5.0 through Smart Technology and Artificial Intelligence".

We have high hopes that this conference will help promote science and technology in Indonesia and prepare us to embrace society, together with all of our coordinated efforts in education, research, and development, and community activities. 5.0.

Welcome to join ICIC 2022

Thank you

Prof. Ir. Zainal Arifin Hasibuan, PhD. Head of APTIKOM

## Message from the General Chair of ICIC 2022



It is my great pleasure to warmly welcome you to the Seventh International Conference on Informatics and Computing (ICIC 2022) held for the first time, in Hybrid mode. Online participation will be held via the Zoom Meeting platform, while offline event will take place in the land on Bali.

The ICIC is a conference series which is conducted annually by APTIKOM, the Indonesian Association of Higher Education in Informatics and Computing. This year the main theme of the conference is "Driving Digital Transformation Toward Society 5.0 through Smart Technology and Artificial Intelligence", with an intention to bring up more awareness in our society on the importance of Artificial Intelligence in the current era and beyond.

The ICIC conference series as a flagship conference of APTIKOM serves as an arena for academicians and their students, experts and practitioners from the industry to meet, present, and have fruitful discussions on their research works, ideas, and papers in the wide areas of Computing which covers Computer Science, Information Systems, Information Technology, Software Engineering, and Computer Engineering. The conference is set to provide opportunities for participants from both academia and industry to share and exchange knowledge as well as the cutting-edge development in the computing field. It is expected that the ICIC participants will be able to take away new thinking and horizon from this conferential meeting to further their works in the area.

There are 237 papers submission and only 122 papers are accepted which is around 51% acceptance rate. The accepted papers will be presented in one of the 9 regular parallel and tracks sessions and will be published in the conference proceedings volume. The diversity of authors come from 9 different countries.

All accepted papers are submitted to IEEE Xplore. IEEE Conference Number: #56845. Catalog Number: CFP22G52-ART ISBN: 979-8-3503-4571-1

On behalf of the ICIC 2022 organizers, we wish to extend our warm welcome and would like to thank for all Keynote Speakers, Reviewers, Authors, and Committees, for their effort, guidance, contribution and valuable support. We would like to also extend our gratitude to IEEE Indonesia Section for technically co-sponsored this event.

I wish you all a most wonderful, enjoyable, and productive conference in this ICIC 2022.

Thank you.

Wa billahi taufiq wal hidayah. Wallahul muwaffiq ila aqwamit tharieq.

Wasalaamu 'alaykum warahmatullahi wabarakaatuh.

Yusuf Durachman, M.I.T Organizing Chair

## The 2022 International Conference on Informatics and Computing (ICIC) Committee

## **Steering Committee:**

Zainal A. Hasibuan, Dian Nuswantoro University, Indonesia Achmad Benny Mutiara, Gunadarma University, Indonesia

## **General Chair:**

Yusuf Durachman, UIN Syarif Hidayatullah Jakarta, Indonesia

## **Program Co-chair:**

Husni Teja Sukmana, UIN Syarif Hidayatullah Jakarta, Indonesia Prihandoko, Gunadarma University, Indonesia Anton Satria Prabuwono, King Abdulaziz University, Saudi Arabia

## **Publication Co-chairs:**

Dwiza Riana, STMIK Nusa Mandiri, Indonesia Dewi Khairani, UIN Syarif Hidatullah Jakarta, Indonesia Dian Syafitri, STMIK Bumigora Mataram, Indonesia

## **Publicity Co-chairs:**

Solikin, University of Bina Insani, Indonesia Hanny Hikmayanti Handayani, University of Buana Perjuangan Karawang, Indonesia Yuhandri, University of Putra Indonesia YPTK Padang, Indonesia

## **Technical Program Committee Co-chair:**

Achmad Nizar Hidayanto, Universitas of Indonesia, Indonesia Husni Teja Sukmana, UIN Syarif Hidayatullah Jakarta, Indonesia

## Web Development:

Dewi Khairani, UIN Syarif Hidatullah Jakarta, Indonesia Deden Wahiddin, University of Buana Perjuangan Karawang, Indonesia

## **TPC members:**

Doni Purnama Alamsyah Bina Nusantara University Indra Budi Fasilkom UI Esmeralda Djamal Universitas Jenderal Achmad Yani Syaifuddin Dr. STIE Sebelas April Yusuf Durachman State Islamic University of Syarif Hidayatullah Jakarta Arfive Gandhi Telkom University Rahmadya Handayanto universitas islam 45 Tri Handhika Gunadarma University Dr. Muhammad Said Hasibuan IBI Darmajaya Henderi Henderi Universitas Raharja Nanang Husin Universitas Negeri Surabaya Dedi Iskandar Inan University of Technology, Sydney Norhaslinda Kamaruddin MARA University of Technology Sandy Kosasi STMIK Pontianak Robby Kurniawan Harahap Gunadarma University Dr. Uky Yudatama M.Kom Universitas Muhammadiyah Magelang Purnawarman Musa Gunadarma University Achmad Benny Mutiara Gunadarma University Achmad Nizar University of Indonesia Cecilia Nugraheni Parahyangan Catholic University Eri Prasetyo Gunadarma University Dr. Heny Pratiwi STMIK Widya Cipta Dharma Prihandoko Prihandoko Universitas Gunadarma Tri Kuntoro Priyambodo Universitas Gadjah Mada Untung Rahardja Universitas Raharja Arief Ramadhan Binus University Dwiza Riana STMIK Nusa Mandiri Ridwan Sanjaya Soegijapranata Catholic University, Indonesia Harry B. Santoso Faculty of Computer Science, Universitas Indonesia Sunny Arief Sudiro STMIK Jakarta STI&K Sukemi Sukemi Universitas Sriwijaya Husni Teja Sukmana Syarif Hidavatullah State Islamic University Jakarta Aries Susanto UIN Svarif Hidavatullah Jakarta Evi Triandini Institut Teknologi dan Bisnis STIKOM Bali Helna Wardhana Universitas Bumigora Retantyo Wardoyo Universitas Gadjah Mada Andree E. Widjaja Universitas Pelita Harapan

# Program Structures Thursday, December 8<sup>th</sup>, 2022

| TIME*         | PROGRAM                                            | PIC/SPEAKERS   | VENUE                                                                                              |
|---------------|----------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------|
| 08.00 - 08.45 | Author and Participant Registration                | ICIC Committee | Denpasar Room (3 <sup>rd</sup> FL)                                                                 |
| 09.00 - 09.45 | Keynote Session ICIC<br>Speaker:<br>Moderator:     | ICIC Committee | Virtual<br>Onsite: Denpasar Room (3 <sup>rd</sup> FL)<br>(PIC: Ricky)                              |
| 09.45 - 10.00 | Coffee Break                                       | ICIC Committee | TBA / Parallel Room 4th FL                                                                         |
| 10.00 - 12.00 | Parallel session I ICIC                            | ICIC Committee | Parallel Room 4 <sup>th</sup> FL<br>PIC1: Arsa<br>PIC2: Arya Budi<br>( <b>Breakout room Zoom</b> ) |
| 12.00 - 13.00 | Lunch                                              | ICIC Committee | Ground FL Restaurant                                                                               |
| 13.00 – 14.45 | ICIC Opening join with APTIKOM National Conference | e (MUNAS)      | Griya Agung Ballroom (2 <sup>nd</sup> Floor)                                                       |
| 14.45 – 15.00 | Coffee Break                                       |                | TBA/ Parallel Room 4th FL                                                                          |
| 15.00 – 17.00 | Parallel session II ICIC                           | ICIC Committee | Parallel Room 4 <sup>th</sup> FL<br>( <b>Breakout room Zoom</b> )                                  |
| 17.30 – 18.00 | ICIC Closing                                       | ICIC Committee | Denpasar Room (3 <sup>rd</sup> FL)                                                                 |

\*) All time are in Central Indonesia time (WITA), or UTC +8

## Presentation Schedule

| DAY        | TIME        | Chair      | : Prof Sr | AN ROOM<br>i Hartati<br>Ihyu Danuarta  |       | MLAPU<br>Agus Ha<br>olla Adi    | rdjoko |       | BANGLI R<br>ir: Henderi<br>Gede Bagu |        |       | SINGARAJ<br>r: Dedi. I l<br>talia Sastr | nan    |
|------------|-------------|------------|-----------|----------------------------------------|-------|---------------------------------|--------|-------|--------------------------------------|--------|-------|-----------------------------------------|--------|
| THURSDAY   | Session 1   | CS/I       | 3         | Onsite                                 | CS/I  | 24                              | Onsite | CS/I  | 55                                   | Onsite | IS/IT | 161                                     | Onsite |
| 8 Nov 2022 | 10.00-12.00 | CS/I       | 17        | Onsite                                 | CS/I  | 31                              | Onsite | CS/I  | 59                                   | Onsite | IS/IT | 163                                     | Onsite |
|            |             | CS/I       | 18        | Onsite                                 | CS/I  | 39                              | Onsite | CS/I  | 61                                   | Onsite | IS/IT | 214                                     | Onsite |
|            |             | CS/I       | 76        | Onsite                                 | CS/I  | 54                              | Onsite | CS/I  | 86                                   | Onsite | IS/IT | 134                                     | Onsite |
|            |             | CS/I       | 75        | Onsite                                 | CS/I  | 112                             | Onsite | CS/I  | 183                                  | Onsite | SE    | 33                                      | Onsite |
|            |             | CS/I       | 74        | Onsite                                 | CS/I  | 117                             | Onsite | CS/I  | 190                                  | Onsite | SE    | 123                                     | Onsite |
|            |             | CS/I       | 98        | Onsite                                 | CS/I  | 172                             | Onsite | CS/I  | 208                                  | Onsite | SE    | 193                                     | Onsite |
|            |             | CS/I       | 104       | Onsite                                 | CS/I  | 181                             | Onsite | CS/I  | 141                                  | Onsite | IS/IT | 158                                     | Onsite |
|            |             |            |           |                                        |       |                                 |        |       |                                      |        |       |                                         |        |
|            |             | Chair: Dr. | Heni Ju   | AN ROOM<br>suf, M.Kom<br>Ihyu Danuarta |       | MLAPU<br>r: Dedi. I<br>olla Adi | Inan   |       | BANGLI R<br>ir: Henderi<br>Gede Bagu |        |       | SINGARAJ<br>Sandy Ko<br>Italia Sastr    | osasi  |
|            | Session 2   | IS/IT      | 49        | Onsite                                 | IS/IT | 93                              | Onsite | MM    | 207                                  | Onsite | CS/I  | 171                                     | Onsite |
|            | 15.00-17.00 | IS/IT      | 53        | Onsite                                 | IS/IT | 95                              | Onsite | MM    | 1                                    | Onsite | CS/I  | 176                                     | Onsite |
|            |             | IS/IT      | 68        | Onsite                                 | IS/IT | 92                              | Onsite | MM    | 206                                  | Onsite | CS/I  | 121                                     | Onsite |
|            |             | IS/IT      | 100       | Onsite                                 | IS/IT | 115                             | Onsite | MM    | 122                                  | Onsite | CS/I  | 225                                     | Onsite |
|            |             | CE/CS      | 57        | Onsite                                 | CE/CS | 91                              | Onsite | IS/IT | 209                                  | Onsite | IS/IT | 228                                     | Onsite |
|            |             | CE/CS      | 65        | Onsite                                 | CE/CS | 195                             | Onsite | IS/IT | 213                                  | Onsite | IS/IT | 232                                     | Onsite |
|            |             | CE/CS      | 23        | Onsite                                 | CE/CS | 82                              | Onsite | IS/IT | 41                                   | Onsite | IS/IT | 235                                     | Onsite |
|            |             | CE/CS      | 84        | Onsite                                 |       |                                 |        | IS/IT | 12                                   | Onsite |       |                                         |        |

| DAY        | TIME        | ٦<br>Chair: Dr. Ba<br>Host: Putu I |     |         | Chair:<br>Host: I Gusti M | Track 6<br>M Said Hasi<br>Iade Raditya |                                                                  | Chair: Dr. F |     |                                                                      |       | rack 8<br>no Nanang,<br>man Yuspita |         | Chair: L | 'rack 9<br>asmedi A<br>oman Arie |         |
|------------|-------------|------------------------------------|-----|---------|---------------------------|----------------------------------------|------------------------------------------------------------------|--------------|-----|----------------------------------------------------------------------|-------|-------------------------------------|---------|----------|----------------------------------|---------|
| THURSDAY   | Session 1   | CS/I                               | 36  | Virtual | CS/I                      | 148                                    | Virtual                                                          | IS/IT        | 13  | Virtual                                                              | IS/IT | 126                                 | Virtual | CS/I     | 229                              | Virtual |
| 8 Nov 2022 | 10.00-12.00 | CS/I                               | 37  | Virtual | CS/I                      | 154                                    | Virtual                                                          | IS/IT        | 28  | Virtual                                                              | IS/IT | 136                                 | Virtual | CS/I     | 230                              | Virtual |
|            |             | CS/I                               | 51  | Virtual | CS/I                      | 170                                    | Virtual                                                          | IS/IT        | 46  | Virtual                                                              | IS/IT | 137                                 | Virtual | CS/I     | 233                              | Virtual |
|            |             | CS/I                               | 67  | Virtual | CS/I                      | 175                                    | Virtual                                                          | IS/IT        | 52  | Virtual                                                              | IS/IT | 192                                 | Virtual | IS/IT    | 237                              | Virtual |
|            |             | CS/I                               | 108 | Virtual | CS/I                      | 184                                    | Virtual                                                          | IS/IT        | 69  | Virtual                                                              | IS/IT | 200                                 | Virtual | IS/IT    | 226                              | Virtual |
|            |             | CS/I                               | 139 | Virtual | CS/I                      | 186                                    | Virtual                                                          | IS/IT        | 72  | Virtual                                                              | IS/IT | 202                                 | Virtual | IS/IT    | 236                              | Virtual |
|            |             | CS/I                               | 146 | Virtual | CS/I                      | 199                                    | Virtual                                                          | IS/IT        | 94  | Virtual                                                              | IS/IT | 216                                 | Virtual | CE/CS    | 231                              | Virtual |
|            |             | CS/I                               | 147 | Virtual | CS/I                      | 234                                    | Virtual                                                          | IS/IT        | 116 | Virtual                                                              | IS/IT | 223                                 | Virtual | CE/CS    | 90                               | Virtual |
|            |             |                                    |     |         |                           |                                        |                                                                  |              |     |                                                                      |       |                                     |         |          |                                  |         |
|            |             | ٦<br>Chair: Dr. Ba<br>Host: Putu I |     |         |                           |                                        | Track 7<br>Chair: Dr. Rangga Firdaus<br>Host: Ni Putu Devi Putri |              |     | Track 8<br>Chair: Sunny Arief Sudiro<br>Host: Ni Nyoman Yuspita Dewi |       |                                     |         |          |                                  |         |
|            | Session 2   | CE/CS                              | 27  | Virtual | CS/I                      | 22                                     | Virtual                                                          | CS/I         | 70  | Virtual                                                              | IS/IT | 44                                  | Virtual |          |                                  |         |
|            | 15.00-17.00 | CE/CS                              | 50  | Virtual | CS/I                      | 191                                    | Virtual                                                          | CS/I         | 79  | Virtual                                                              | IS/IT | 106                                 | Virtual |          |                                  |         |
|            |             | CE/CS                              | 66  | Virtual | CS/I                      | 205                                    | Virtual                                                          | CS/I         | 101 | Virtual                                                              | IS/IT | 85                                  | Virtual |          |                                  |         |
|            |             | CE/CS                              | 198 | Virtual | CS/I                      | 119                                    | Virtual                                                          | CS/I         | 103 | Virtual                                                              | IS/IT | 224                                 | Virtual |          |                                  |         |
|            |             | CS/I                               | 14  | Virtual | CS/I                      | 110                                    | Virtual                                                          | SE           | 107 | Virtual                                                              | CS/I  | 2                                   | Virtual |          |                                  |         |
|            |             | CS/I                               | 182 | Virtual | CS/I                      | 77                                     | Virtual                                                          | SE           | 135 | Virtual                                                              | CS/I  | 40                                  | Virtual |          |                                  |         |
|            |             | MM                                 | 15  | Virtual | CS/I                      | 187                                    | Virtual                                                          | SE           | 16  | Virtual                                                              | CS/I  | 62                                  | Virtual |          |                                  |         |
|            |             | MM                                 | 179 | Virtual |                           |                                        |                                                                  | IS/IT        | 227 | Virtual                                                              | CS/I  | 73                                  | Virtual |          |                                  |         |

\*) All time are in Central Indonesia time (WITA), or UTC +8

Link Zoom:

https://us02web.zoom.us/j/89497273675?pwd=MEY3bkxmSitWZm9NUGRiWDNiQlgrUT09

Meeting ID: 894 9727 3675 Passcode: icic2022

Tracks:

CE/CS CE and Computer Systems
 CS/I CS and Informatics
 MM Multimedia
 IS/IT IS, IT and Management
 SE Software Engineering

## Presentation Schedule Session 1 - 10.00 - 12.00

|      |     | Track 1 - TABANAN ROOM<br>Chair: Prof Sri Hartati<br>Host: I KM Dwiki Wahyu Danuarta                                                     |                                                                                                                                   |  |  |
|------|-----|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|
| CS/I | 3   | The Estimating of Nutrient Value in Apples Based on Size Employing the Canny Edge Detection Algorithm                                    | Anis Fitri Nur Masruriyah, Muhammad Haidar<br>Ijlal, Rahmat Rahmat, Hanny Hikmayanti<br>Handayani, Deden Wahiddin and Ahmad Fauzi |  |  |
| CS/I | 17  | Garbage Classification Using CNN Architecture ShuffleNet v2                                                                              | Eka Setya Wijaya, Andy Mizwar, Ahmad<br>Mujaddid Islami, Yuslena Sari, Erika Maulidiya<br>and Irham Maulani Abdul Gani            |  |  |
| CS/I | 18  | Bankruptcy Prediction using Ensemble Support Vector Machine                                                                              | Nurul Fathanah Mustamin, Jeffry, Supriyadi La<br>Wungo, Firman Aziz and Nurafni Shahnyb                                           |  |  |
| CS/I | 76  | Comparison of Smoothing Methods for Noise<br>Reduction on Baseline Electroencephalogram Signals                                          | I Made Agus Wirawan, Retantyo Wardoyo,<br>Danang Lelono and Sri Kusrohmaniah                                                      |  |  |
| CS/I | 75  | Improvising Low Contrast Malaria Images Using<br>Contrast Enhancement Techniques on Various Color<br>Models                              | Doni Setyawan, Retantyo Wardoyo, Moh<br>Wibowo and E. Elsa Hardiana Murhandarwati                                                 |  |  |
| CS/I | 74  | A Study on Text Feature Selection Using Ant Colony<br>and Grey Wolf Optimization                                                         | Joan Angelina Widians, Retantyo Wardoyo and Sri Hartati                                                                           |  |  |
| CS/I | 98  | Analysis of Face Data Augmentation in Various Poses<br>for Face Recognition Model                                                        | T.M. Syahril Nur Alamsyah, Taufik Abidin, Ridha<br>Ferdhiana, Muhammad Dirhamsyah and<br>Muhammad Chaidir                         |  |  |
| CS/I | 104 | Dual Cluster Head Selection Based on LEACH and<br>Differential Search Algorithm to Extend Network<br>Lifetime in Wireless Sensor Network | Kun Nursyaiful Priyo Pamungkas, Supeno<br>Djanali, Radityo Anggoro, Paliling, Puhrani<br>Burhan and Feriyadi                      |  |  |

## Track 2 - AMLAPURA ROOM Chair: Agus Hardjoko Host: Rolla Adi Prawira

| CS/I | 24  | Public Sentiment Analysis of Indonesian Tweets<br>About COVID-19 Vaccination Using Different Machine<br>Learning Approaches | Valentinus Paramarta, Adele Mailangkay, Hilda<br>Amalia and Desta Chrismas                                         |
|------|-----|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| CS/I | 31  | Fire Detection In Wetland Using YOLOv4 And Deep<br>Learning Architecture                                                    | Andreyan Rizky Baskara, Yuslena Sari, Auria<br>Andeni Anugerah, Eka Setya Wijaya and<br>Ricardus Anggi Pramunendar |
| CS/I | 39  | A Systematic Literature Review Enhanced Felder<br>Silverman Learning Style Models (FSLSM)                                   | Supangat Supangat and Mohd Zainuri Bin<br>Saringat                                                                 |
| CS/I | 54  | Vanishing Point Detection using Angle-based Hough<br>Transform and RANSAC                                                   | Dea Angelia Kamil, Agus Harjoko and Wahyono<br>Wahyono                                                             |
| CS/I | 112 | Systematic Literature Review of Text Feature Extraction: Research Trends, Datasets, and Methods                             | Agus Mulyanto, Sri Hartati and Retantyo Wardoyo                                                                    |
| CS/I | 117 | A Time-Window Approach to Recommending<br>Emerging and On-the-rise Items                                                    | Tubagus Mohammad Akhriza and Indah Dwi<br>Mumpuni                                                                  |
| CS/I | 172 | Energy Efficiency in Buildings Using Multivariate<br>Extreme Gradient Boosting                                              | Triando Hamonangan Saragih, Rahmat<br>Ramadhani, Muhammad Itgan Mazdadi and<br>Muhammad Haekal                     |
| CS/I | 181 | Sentiment Classification of Visitors in Yogyakarta<br>Palace using Support Vector Machine                                   | Cahya Damarjati, Fadia Rani and Slamet Riyadi                                                                      |

|      |     | Track 3 - BANGLI ROOM<br>Chair: Henderi<br>Host: I Dewa Gede Bagus Suyoga                                                           |                                                                                                                      |  |  |  |
|------|-----|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|--|
| CS/I | 55  | Classification and Sentiment Analysis on Tweets of the Ministry of Health Republic of Indonesia                                     | Apriandy Angdresey, Indah Yessi Kairupan and Kenshin Geraldy Emor                                                    |  |  |  |
| CS/I | 59  | Conditional Random Field for Crime News<br>Information Extraction with SMOTE                                                        | <u>Viny Christanti Mawardi, Veronika Veronika and</u><br><u>Dali Santun Naga</u>                                     |  |  |  |
| CS/I | 61  | The Implementation of Real-ESRGAN as An<br>Anticipation to Reduce CER Value in Plate Number<br>Extraction Results Employing EasyOCR | Geo Septian, Deden Wahiddin, Hilda Novita, Hanny<br>Hikmayanti Handayani, Ayu Ratna and Anis Fitri<br>Nur Masruriyah |  |  |  |
| CS/I | 86  | Classification of Chili Plant Condition based on<br>Color and Texture Features                                                      | Deffa Rahadiyan, Sri Hartati, Wahyono Wahyono<br>and Andri Prima Nugroho                                             |  |  |  |
| CS/I | 183 | Hate Speech Detection in Code-Mixed Indonesian<br>Social Media: Exploiting Multilingual Languages<br>Resources                      | Endang Wahyu Pamungkas, Azizah Fatmawati,<br>Dedi Gunawan, Yusuf Sulistyo Nugroho and Endah<br>Sudarmilah            |  |  |  |
| CS/I | 190 | Comparison of Convolutional Neural Network<br>Models to Detect Covid-19 on CT-Scan Images                                           | <u>Slamet Riyadi, Suci Rahmadina M. Rasyid and</u><br><u>Cahya Damarjati</u>                                         |  |  |  |
| CS/I | 208 | Analysis of Indonesian Discussion Tendency on<br>Twitter with Text Classification                                                   | Reyvan Rizky Irsandy and Ayu Purwarianti                                                                             |  |  |  |
| CS/I | 141 | 1D Convolutional Neural Network to Detect<br>Ventricular Fibrillation                                                               | Sava Savero, Muammar Sadrawi and David<br>Agustriawan                                                                |  |  |  |

| Track 4 - SINGARAJA ROOM  |
|---------------------------|
| Chair: Dedi. I Inan       |
| Host: Natalia Sastra Guna |

| IS/IT | 161 | Adaptation on Education after Covid-19 –<br>Optimalizing Cognitive Load on Nervous System<br>Science Learning for Higher Education Students<br>through the Usage of Chunking Style Animation in<br>Social Learning Media | Ng Melissa Angga, Cicilia Caroline Phieranto,<br>Fonny Tejo, Dionisius Yovan, Angelica Angelica<br>and Felicia Sumarsono Putri                                                          |
|-------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IS/IT | 163 | Topic Modeling for Cyber Threat Intelligence (CTI)                                                                                                                                                                       | Hatma Suryotrisongko, Hari Ginardi, Saeed Dehqan<br>and Yasuo Musashi                                                                                                                   |
| IS/IT | 214 | Evaluation of Enterprise Resource Planning (ERP)<br>and Open-source ERP Modification for<br>Performance Improvement                                                                                                      | Ananda and Jansen Wiratama                                                                                                                                                              |
| IS/IT | 134 | M-Government Adoption in Indonesia: Self-<br>Determination Theory                                                                                                                                                        | Dedi I. Inan, Achmad Nizar Hidayanto, Ratna Juita,<br>Antares Firman, Ali Muktiyanto, Hermawan<br>Wibisana Arifin, Muhammad Rizky Darmawan,<br>Nabilla Yuli Shafira and Cassie Michelle |
| SE    | 33  | Design and Build a Attendance System and<br>Employee Performance Assessment with a<br>Website-Based Profile Matching Method                                                                                              | <u>Hata Maulana, Noorlela Marcheta, Asep Taufik</u><br><u>Muharram, Kamil Raihan Permana and Alifiah Putri</u><br><u>Aisyah</u>                                                         |
| SE    | 123 | GeoJSON Implementation for Demographic and<br>Geographic Data Integration Using RESTful Web<br>Services                                                                                                                  | Alam Rahmatulloh, Bambang Tri Handoko, Rahmi<br>Nur Shofa and Irfan Darmawan                                                                                                            |
| SE    | 193 | Development of Portal Signer for Digital Products<br>by Using Iterative Model at PT RST                                                                                                                                  | Manogunawan Resqi Gultom, Riyanthi Angrainy<br>Sianturi, Rince Septriana Parhusip, Ova Ferdinan<br>Marbun and Yohanssen Pratama                                                         |
| IS/IT | 158 | Adoption Technology at MSMEs: A Conceptual Model with TOE                                                                                                                                                                | Evi Triandini, I Gusti Ngurah Satria Wijaya, I Ketut<br>Putu Suniantara and Sugiarto Sugiarto                                                                                           |

## Presentation Schedule Session 2 – 10.00-12.00 (UIRTUAL)

|      |     | Track<br>Chair: Dr. Bambaı<br>Host: Putu Handi                                                                                                 | ng Krismono                                                                                                                      |
|------|-----|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| CS/I | 36  | Comparison of the K-Nearest Neighbor and Decision<br>Tree algorithm to the Sentiment Analysis of<br>Investment Applications Users in Indonesia | Doni Purnama Alamsyah, Rizkiansyah<br>Rizkiansyah and Asti Herliana                                                              |
| CS/I | 37  | Investigation of Netizen Sentiment Analysis Toward<br>The Controversy of Information and Electronic<br>Transaction Law                         | Fahdi Saidi Lubis, Muharman Lubis and Lukmanul<br>Hakim                                                                          |
| CS/I | 51  | Sentiment Analysis of "Hepatitis of Unknown Origin" on Social Media using Machine Learning                                                     | Nova Agustina, Harya Gusdevi, lis Ismawati,<br>Diyah Wijayati and Candra Nur Ihsan                                               |
| CS/I | 67  | Multiclass Intent Classification for Chatbot Based on<br>Machine Learning Algorithm                                                            | Wan Mohd Amir Fazamin Wan Hamzah, Mohd<br>Kamir Yusof, Ismahafezi Ismail, Mokhairi Makhtar,<br>Hasnah Nawang and Azwa Abdul Aziz |
| CS/I | 108 | Low Cloud Type Classification System Using<br>Convolutional Neural Network Algorithm                                                           | Muhammad Naufal Fikriansyah, Hapsoro Agung<br>Nugroho and Marzuki Sinambela                                                      |
| CS/I | 139 | Rice seed classification using machine learning and deep learning                                                                              | Budi Dwi Satoto, Devie Rosa Anamisa, Budi<br>Irmawati, Muhammad Yusuf, Mohammad Kautsar<br>Sophan and Siti Oryza Khairunnisa     |
| CS/I | 146 | Analysis for Data Mobility and Covid-19 Positive Rate with Multilayer Perceptron                                                               | Arie Vatresia, Ruvita Faurina and Riki Zulfahmi                                                                                  |
| CS/I | 147 | Multibranch Convolutional Neural Network For<br>Gender And Age Identification Using Multiclass<br>Classification And FaceNet Model             | Haris Setiawan, Mudrik Alaydrus and Abdi Wahab                                                                                   |

|      |     | Track 6<br>Chair: M Said Hasibuan<br>Host: I Gusti Made Raditya Adi Wiguna                    |                                                                                                                                              |  |  |  |
|------|-----|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| CS/I | 148 | Detecting Online Outlier for Data Streams<br>using Recursive Residual                         | <u>Yasi Dani</u>                                                                                                                             |  |  |  |
| CS/I | 154 | Implementation of Adaptive Bit Decision Point to Improve Receiver Performance in Li-Fi System | Juan S. Biantong, Mudrik Alaydrus and Ahmad Sony<br>Alfathani                                                                                |  |  |  |
| CS/I | 170 | LongSpam: Spam Email Detection using LSTM Algorithm                                           | Nurhadi Wijaya                                                                                                                               |  |  |  |
| CS/I | 175 | LSTM and ARIMA for Forecasting COVID-19<br>Positive and Mortality Cases in Indonesia          | <u>Syafrial Fachri Pane, Adiwijaya Adiwijaya, Mahmud Dwi</u><br><u>Sulistiyo and Alfian Akbar Gozali</u>                                     |  |  |  |
| CS/I | 184 | Semantic Segmentation of Landsat Satellite<br>Imagery                                         | <u>Herlawati Herlawati, Rahmadya Trias Handayanto,</u><br><u>Prima Dina Atika, Sugiyatno Sugiyatno, Rasim Rasim</u><br>and Mugiarso Mugiarso |  |  |  |
| CS/I | 186 | DeepRec: Efficient Product Recommendation<br>Model for E-Commerce using CNN                   | Hamzah Hamzah, Erizal Erizal and Mohammad Diqi                                                                                               |  |  |  |
| CS/I | 199 | Adopting Haar Cascade Algorithm on Mask<br>Detection System Based on Distance                 | Jemakmun Jemakmun, Rudi Suhirja, Darius Antoni,<br>Hadi Syaputra and Darius Antoni                                                           |  |  |  |
| CS/I | 234 | E-Archive Document Clustering Information<br>System Using K-Means Algorithm                   | <u>Aida Fitriyani, Wowon Priatna, Dani Yusuf, Tri Dharma,</u><br><u>Sri Rejeki and Amri Amri</u>                                             |  |  |  |

|       |     | Track 7<br>Chair: Dr. Rangga Firdaus<br>Host: Ni Putu Devi Putri                                                                                                  |                                                                                                                                                                             |  |  |  |
|-------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| IS/IT | 13  | The Influence of The COVID-19 Pandemics in Indonesia<br>On Predicting Economic Sectors                                                                            | Heriyanto Heriyanto, Syafrial Fachri Pane,<br>Aji Gautama Putrada, Nur Alamsyah and<br>Mohamad Nurkamal Fauzan                                                              |  |  |  |
| IS/IT | 28  | Validation and Verification of Business Architecture<br>Process Based On The V . Model                                                                            | Widia Febriyani, Firna Muninggar Kistianti<br>and Muharman Lubis                                                                                                            |  |  |  |
| IS/IT | 46  | Acceptance Rate Analysis of Internal Management<br>Operational Application on Pt. Sigma Cipta Caraka Using<br>Technology Acceptance Model (TAM)                   | Fatimah Azzahra Ashari, Muhammad Qamra<br>Zahran Muharam, Junia Himmayati and<br>Teguh Prasandy                                                                             |  |  |  |
| IS/IT | 52  | ONLINE LEARNING AND STUDENTS' ETHICAL<br>BEHAVIOR DURING COVID-19: FOR BETTER OR FOR<br>WORSE? CASE STUDY FOR CREATIVEPRENEURSHIP<br>STUDY PROGRAM, BINUS BANDUNG | <u>Febri Tri Intan Azhana, Rosita Widjojo,</u><br><u>Khusnul Khotimah, Doni Purnama Alam</u><br><u>Syah, Muchamad Rizky Zakaria and Balqis</u><br><u>Putri Hidayatullah</u> |  |  |  |
| IS/IT | 69  | Analysis of Design Implementation Guidelines for Data<br>Governance Management Based on DAMADMBOKv2                                                               | Fadhil Rozi Hendrawan, Tien Fabrianti<br>Kusumasari and Rokhman Fauzi                                                                                                       |  |  |  |
| IS/IT | 72  | Enterprise Architecture Planning based on One Data in Indonesian Higher Education                                                                                 | Hery Dian Septama, Muhamad Komarudin,<br>Puput Budi Wintoro, Mahendra Pratama,<br>Titin Yulianti and Bambang Sundari                                                        |  |  |  |
| IS/IT | 94  | Motivation and Drivers for Online Fashion Rental: Study by Social Networking Sites in Indonesia                                                                   | Margareth Setiawan, Sandy Setiawan, Aris<br>Darisman and Rosyidah Rahmah                                                                                                    |  |  |  |
| IS/IT | 116 | Model Implementation of Application Programming<br>Interface for E-Government Data Integration                                                                    | <u>Agus Sifaunajah, Tholib Hariono, Moh.</u><br><u>Anshori Aris Widya, Primaadi Airlangga,</u><br><u>Sujono and Siti Sufaidah</u>                                           |  |  |  |

## Track 8 Chair: Herlino Nanang, PhD Host: Ni Nyoman Yuspita Dewi

| IS/IT | 126 | Android-based Matrix Learning Media to Increase Student Interest in Learning                                                               | Isna Wardiah, Rahimi Fitri, Reza Fauzan, Seberan<br>and Fuad Sholihin                                                                                                |
|-------|-----|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IS/IT | 136 | Digital Transformation Impact Analysis towards<br>Transition in the Role of Information Technology<br>for Organization in New Digital Bank | Yosua Pangihutan Sagala, Muhammad Akmal<br>Juniawan, Vina Ardelia Effendy, Rahmawati<br>Putrianasari, Vien Aulia Rahmatika, Muhammad Rifki<br>Shihab and Benny Ranti |
| IS/IT | 137 | Analysis of Critical Success Factors in<br>Information Technology Projects: A National<br>Shipping Company Case Study                      | Ivan Eka Aditya, Ardhy Wisdarianto and Teguh<br>Raharjo                                                                                                              |
| IS/IT | 192 | User Experience Evaluation of IT Support Mobile<br>Application Using System Usability Scale (SUS)<br>and Retrospective Think Aloud (RTA)   | Imanuel Revelino, Sunardi Sunardi, Ratih Muthiah<br>Kamilia, Ganis Maulia Yusuf and Rizki Kurniawan                                                                  |
| IS/IT | 200 | Impact of Leadership in Transitioning IT Roles<br>from Turnaround to Strategic: Case Study of PT.<br>XYZ                                   | Paulus Donny Junianto, Rizal Fathoni Aji and Ryan<br>Randy Suryono                                                                                                   |
| IS/IT | 202 | Usability Evaluation on Educational Chatbot<br>using the System Usability Scale (SUS)                                                      | Arief Hidayat, Agung Nugroho and Safa'Ah Nurfa'lzin                                                                                                                  |
| IS/IT | 216 | Adaptivo: A Personalized Adaptive E-Learning<br>System based on Learning Style and Prior<br>Knowledge                                      | Mohammed Rishard, Sandaru Jayasekara, Piumi<br>Ekanayake, Jayani Wickramathilake, Kalpani<br>Manathunga and Jagath Wickramarathne                                    |
| IS/IT | 223 | Data Balance Optimization of Fraud<br>Classification for E-Commerce Transaction                                                            | <u>Aida Fitriyani, Wowon Priatna, Dani Yusuf, Tri</u><br><u>Dharma, Sri Rejeki and Amri Amri</u>                                                                     |

|       | Track 9<br>Chair: Lasmedi Afuan<br>Host: Ni Nyoman Arie Rahayu |                                                                                                                                        |                                                                                                                    |
|-------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| CS/I  | 229                                                            | Optimization Analysis of Neural Network Algorithms<br>Using Bagging Techniques on Classification of Date<br>Fruit Types                | Rully Pramudita, Solikin Solikin and Nadya<br>Safitri                                                              |
| CS/I  | 230                                                            | Machine Learning Model Based on REST API for<br>Predicting Tenders Winner                                                              | Mardi Yudhi Putra, Rachmad Nur Hayat,<br>Ahmad Chusyairi, Dwi Ismiyana Putri and<br>Solikin Solikin                |
| CS/I  | 233                                                            | Implementation of Discrete Cosine Transform and<br>Permutation-Substitution Scheme Based on Henon<br>Chaotic Map for Images            | Andrean Lius, Eric Eric, Irpan Pardosi and<br>Hernawati Gohzali                                                    |
| IS/IT | 237                                                            | THE INFLUENCE OF BLENDED LEARNING WITH<br>FLIPPED CLASSROOM MODEL ON MOTIVATION IN<br>LEARNING GEOGRAPHY                               | Nur Azizah, Jakiatin Nisa, Syairul Bahar,<br>Andri Noor Ardiansyah and Abd. Rozak                                  |
| IS/IT | 226                                                            | Implementation of Internship Decision Support System Using Simple Multi Attribute Rating Technique (SMART)                             | Pajri Aprilio and Sy Yuliani                                                                                       |
| IS/IT | 236                                                            | Towards Tourism Management Platform for Culinary<br>Tourism Management and Merchandise E-Catalogs                                      | Nurul Firdaus, Salsabila Fithriyah, Hartatik H,<br>Agus Purbayu, Fiddin Yusfida A'La and<br>Berliana Kusuma Riasti |
| CE/CS | 231                                                            | IoT-Based Smart Bin Using Smell, Weight, And Height Sensors                                                                            | Abraham Bulyan Zebua, Muhammad Fahrul<br>Azmi Husni, Muhammad Naufal, Andri Andri<br>and Syanti Irviantina         |
| CE/CS | 90                                                             | Face Recognition System Using Feature Extraction<br>Method of 2-D Gabor Wavelet Filter Bank and Distance-<br>Based Similarity Measures | <u>R Rizal Isnanto, Ajub Ajulian Zahra and</u><br><u>Andre Lukito Kurniawan</u>                                    |

## Presentation Schedule Session 2 – 15.00 – 17.00

|       | Track 1 - TABANAN ROOM<br>Chair: Dr. Heni Jusuf, M.Kom<br>Host: I KM Dwiki Wahyu Danuarta |                                                                                                                                                                                |                                                                                                                       |
|-------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| IS/IT | 49                                                                                        | Examining User Acceptance of MOOCs: The Role of Openness, Task Technology Fit, and Social Recognition                                                                          | Bernardinus Harnadi, Fx Prasetya and Albertus Widiantoro                                                              |
| IS/IT | 53                                                                                        | ISO 15489 Attributes Prioritization in Electronic<br>Document Management System of the First Level<br>Healthcare Facilities                                                    | Intan Dzikria, Luvia Friska Narulita, Agus<br>Hermanto and Geri Kusnanto                                              |
| IS/IT | 68                                                                                        | IoT-Agri: IoT-based Environment Control and Monitoring System for Agriculture                                                                                                  | Adimas Ketut Nalendra, Dona Wahyudi, M<br>Mujiono, M. Nur Fuad and Ni'Ma Kholila                                      |
| IS/IT | 100                                                                                       | Utilization of Linguistic Data for Learner Assessment on e-Learning: Instrument and Processing                                                                                 | Wenty Dwi Yuniarti, Sri Hartati, Sigit Priyanta<br>and Herman Dwi Surjono                                             |
| CE/CS | 57                                                                                        | Can We Predict Our Electricity Consumption?                                                                                                                                    | Apriandy Angdresey, Lanny Sitanayah and Zefanya Marieke Philia Rumpesak                                               |
| CE/CS | 65                                                                                        | Learner Action Patterns in the Problem-Solving Process<br>Related to Program Code Composition Based on<br>Tracking System Activities                                           | Aulia Akhrian Syahidi, Ahmad Afif Supianto,<br>Tsukasa Hirashima and Yutaka Watanobe                                  |
| CE/CS | 23                                                                                        | Mobile Application Performance Improvement with the<br>Implementation of Code Refactor Based on Code<br>Smells Identification: Dutataniku Agriculture Mobile App<br>Case Study | Argo Wibowo, Antonius Rachmat<br>Chrismanto, Maria Nila Anggia Rini and<br>Lukas Chrisantyo                           |
| CE/CS | 84                                                                                        | Oil Well Monitoring System Based on IoT Technology<br>and Machine Learning                                                                                                     | Evizal Abdul Kadir, Muslim Abdurrahman,<br>Sharul Kamal Abdul Rahim, Agus Arsad, Sri<br>Listia Rosa and Apri Siswanto |

|       | Track 2 - AMLAPURA ROOM<br>Chair: Dedi. I Inan<br>Host: Rolla Adi Prawira |                                                                                                                         |                                                                                                                                                                           |
|-------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IS/IT | 93                                                                        | Adaptive Cooling System for Comfortable<br>Learning                                                                     | David Habsara Hareva                                                                                                                                                      |
| IS/IT | 95                                                                        | UT Metaverse: Beyond Universitas Terbuka<br>Governance Transformation and Open<br>Challenges                            | Antares Firman, Ali Muktiyanto, Dedi I. Inan, Ratna<br>Juita, Ghassan Beydoun and Daryono Daryono                                                                         |
| IS/IT | 92                                                                        | The Follower-Influencer Experience Affecting<br>the Intention to Follow Recommendation: PAD<br>Perspective              | Dedi I. Inan, Achmad Nizar Hidayanto, Ratna Juita,<br>Adam Maulana, Dinda Mutiara Qur'Ani Putri,<br>Muhammad Fariz Farhan, Siti Kaamiliaa Hasnaa and<br>Marlinda Sanglise |
| IS/IT | 115                                                                       | Food Vloggers: Mapping the Relationships<br>between Personal Relevance, Customer<br>Engagement, and Repurchase Decision | Arif Murti Rozamuri, Johan Setiawan, Christian<br>Haposan Pangaribuan, Hidayanti, Tri Wismiarsi and<br>Maria Wahyuni                                                      |
| CE/CS | 91                                                                        | Design of Blind Community Assistance Devices with Indoor Positioning System Technology                                  | Cen Choi Bong, David Habsara Hareva and Samuel<br>Lukas                                                                                                                   |
| CE/CS | 195                                                                       | Portable Monitoring Systems for Rivers Based<br>on Internet of Things                                                   | Henderi Henderi, Mumammad Hudzaifah Nasrullah,<br>Laura Belani Nudiyah, Po Abas Sunarya, Jana Utama<br>and Didik Setiyadi                                                 |
| CE/CS | 82                                                                        | An experimental study on binary optimization using quantum annealing in D-Wave                                          | Nongmeikapam Brajabidhu Singh, Gopal Krishna,<br>Arnab Roy, Joseph L Pachuau and Anish Kumar<br>Saha                                                                      |

|       |     | Track 3 - BANGLI ROOM<br>Chair: Henderi                                                                                                                          |                                                                                                                                                        |  |
|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|       |     | Host: I Dewa Gede Bagus Suyoga                                                                                                                                   |                                                                                                                                                        |  |
| MM    | 207 | Learn Japanese Vocabulary and Hiragana Letters with Augmented Reality for Indonesian Children                                                                    | Riri Safitri, Resnia Trya Muslima and Sandra<br>Herlina                                                                                                |  |
| MM    | 1   | AwThe Museum is so "Dark": The Effect of<br>Thermal Stimuli for Virtual Reality Experience and<br>Emotion                                                        | Gabriel Indra Widi Tamtama, Halim Budi Santoso,<br>Jyun-Cheng Wang and Nila Armelia Windasari                                                          |  |
| MM    | 206 | Interaction Design of Indonesian Anti Hoax Chatbot                                                                                                               | Ryan Daniel, Ayu Purwarianti and Dessi Puji Lestari                                                                                                    |  |
| MM    | 122 | Automatic Determination of Seeded Region<br>Growing Parameters in Watershed Regions to<br>Segmentation of Tuna                                                   | Wanvy Arifha Saputra, Agus Zainal Arifin, Nuruddin<br>Wiranda, Edi Yohanes, Zainal Abidin and Bambang<br>Suriansyah                                    |  |
| IS/IT | 209 | Usability Improvement Through User Interface<br>Design With Human Centered Design (HCD)<br>Method On Junior High School Websites                                 | Saepul Aripiyanto, Riana Munawarohman,<br>Muhamad Azhari, Siti Ummi Masruroh, Dewi<br>Khairani and Husni Teja Sukmana                                  |  |
| IS/IT | 213 | Educational question classification with Graph<br>Neural Network                                                                                                 | Said Al Faraby, Adiwijaya Adiwijaya and Ade<br>Romadhony                                                                                               |  |
| IS/IT | 41  | A Systematic Literature Review of Barriers and<br>Drivers E-Government in Developing Countries:<br>TOE Framework Perspective                                     | Dony Martinus Sihotang, Bambang Aria Yudhistira,<br>Solikin, Dana I Sensuse, Achmad Nizar Hidayanto,<br>Widijanto Satyo Nugroho and Wahyu Catur Wibowo |  |
| IS/IT | 12  | Influence of Electronic Word Of Mouth (e-WOM),<br>Hedonic Motivation, and Price Value On<br>Consumer's Purchase Intention Using Social<br>Commerce "TikTok Shop" | Mutia Maulida, Yuslena Sari and Siti Rohmah                                                                                                            |  |

## Track 4 - SINGARAJA ROOM Chair: Sandy Kosasi Host: Natalia Sastra Guna

| CS/I  | 171 | Improving Candle Direction Classification in Forex<br>Market using Support Vector Machine with<br>Hyperparameters Tuning | Raymond Oetama, Yaya Heryadi, Lukas Lukas<br>and Wayan Suparta                                                                   |
|-------|-----|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| CS/I  | 176 | Sentiment Analysis on Cryptocurrency Based on<br>Tweets and Retweets Using Support Vector<br>Machines and Chi-Square     | Isabella Donita Hasan, Raymond Oetama and Aldo Lionel Saonard                                                                    |
| CS/I  | 121 | Prediction of Work From Home Post COVID-19 using<br>Classification Model                                                 | Risanti Galuh and Johan Setiawan                                                                                                 |
| CS/I  | 225 | A Floor Cleaning Based-Robotic Combines a<br>Microcontroller And A Smartphone                                            | Jafar Shadiq, Rita Wahyuni Arifin, Bayu Aji<br>Prayoga and Solikin Solikin                                                       |
| IS/IT | 228 | Travel Budget Prediction for Determining Tourism<br>Objects Using Simple Additive Weighting (SAW)<br>Algorithm           | <u>H Hartatik, Nurul Firdaus, Rudi Hartono, Berliana</u><br><u>Kusuma Riasti, Agus Purbayu and Fiddin Yusfida</u><br><u>A'La</u> |
| IS/IT | 232 | The role of management technology and innovation strategy in business strategy based on a user perspective               | <u>Nina Kurnia Hikmawati, Yusuf Durachman, Husni</u><br><u>Teja Sukmana and Herlino Nanang</u>                                   |
| IS/IT | 235 | USABILITY TESTING ANALYSIS OF COMPANY<br>WEBSITE SYSTEM IN INDONESIA                                                     | Yusuf Durachman                                                                                                                  |

## Presentation Schedule Session 2 – 15.00 – 17.00 (UIRTUAL)

|       | Track 5<br>Chair: Dr. Bambang Krismono<br>Host: Putu Handika Permana |                                                                                                                          |                                                                                              |
|-------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| CE/CS | 27                                                                   | Modeling and Simulation of Long Range (LoRa)<br>Communication System on Smart Grid                                       | Isminarti Isminarti, Amil Ahmad Ilham,<br>Ardiaty Arief and Syafaruddin Syafaruddin          |
| CE/CS | 50                                                                   | Follicle Detection Model on Ovarian Ultrasound Image                                                                     | <u>Sri Hartati, Aina Musdholifah, Putu Desiana</u><br><u>Wulaning Ayu and Jaswadi Dasuki</u> |
| CE/CS | 66                                                                   | Mobile Device Positioning by Using Dynamic Weighted Centroid Model                                                       | Rifki Kosasih and Ahmad Sabri                                                                |
| CE/CS | 198                                                                  | Monitoring Indoor Air Quality for Thermal Comfort using Internet of Things                                               | Rahmi Andarini and Moeljono Widjaja                                                          |
| CS/I  | 14                                                                   | A PSO-GBR Solution for Association Rule Optimization<br>on Supermarket Sales                                             | Syafrial Fachri Pane, Aji Gautama Putrada,<br>Nur Alamsyah and Mohamad Nurkamal<br>Fauzan    |
| CS/I  | 182                                                                  | The Comparison of Sentiment Analysis Algorithm for<br>Fake Review Detection of The Leading Online Stores in<br>Indonesia | Pius Hans Christian and Ririn Ikana Desanti                                                  |
| MM    | 15                                                                   | SI-BIME Smart Learning Multimedia Platform for<br>Students: a Solutions for the Pandemic-19 in the<br>Regions            | Dina Fitria Murad, Titan Titan, Taufik Darwis<br>and Hardiyansyah Hardiyansyah               |
| MM    | 179                                                                  | Augmented Reality English Education Based iOS with<br>MobileNetV2 Image Recognition Model                                | Doni Purnama Alamsyah, Yudi Ramdhani,<br>Ahmad Setiadi and Agus Tiyansyah Syam               |

| Track 6                               |
|---------------------------------------|
| Chair: M Said Hasibuan                |
| Host: I Gusti Made Raditya Adi Wiguna |

|      | nooti i ouoti muuo nuurju / tai migunu |                                                                                                                                           |                                                                                                                                                        |
|------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| CS/I | 22                                     | Text Normalization on Code-Mixed Twitter Text using Language Detection                                                                    | Rafi Dwi Rizqullah and Indra Budi                                                                                                                      |
| CS/I | 191                                    | Data Pipeline Framework for AIS Data Processing                                                                                           | <u>Ni Kadek Bumi Krismentari, I Made Oka</u><br>Widyantara, Ngurah Indra Er, I Made Dwi Putra<br>Asana, I Putu Noven Hartawan and I Gede<br>Sudiantara |
| CS/I | 205                                    | Real Time Web-based Facemask Detection<br>Implementation                                                                                  | <u>Geraldo Pan, Suryasari Suryasari, Haditya</u><br><u>Setiawan and Aminuddin Rizal</u>                                                                |
| CS/I | 119                                    | Topic Modeling on COVID-19 Vaccination in<br>Indonesia Using LDA Model                                                                    | Nurul Mutiah, Dian Prawira and Ibnur Rusi                                                                                                              |
| CS/I | 110                                    | Dynamic Pricing Analytic of Airbnb Amsterdam<br>Using K-Means Clustering                                                                  | Fitrianingsih Fitrianingsih and Figa Rizfa                                                                                                             |
| CS/I | 77                                     | Decision Tree Algorithm in Visual Novel Game<br>using RenPy Games Engine                                                                  | Diena Rauda Ramdania, Maisevli Harika, Maulana<br>Hamdani, Yana Aditia Gerhana, Nurhadi<br>Qomaruddin, Cepy Slamet and Dian Sa'Adillah<br>Maylawati    |
| CS/I | 187                                    | Analyze and Improve Production Process Using<br>VSM Method: A Case Study of Microplate HT96<br>Production at PT. Promanufacture Indonesia | Muh Ikhsan and Sri Susilawati Islam                                                                                                                    |

|       | Track 7<br>Chair: Dr. Rangga Firdaus<br>Host: Ni Putu Devi Putri |                                                                                                                                         |                                                                                                                                                |
|-------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| CS/I  | 70                                                               | Implementation of Modified Linear Congruent<br>Methods in Randomizing Exam Questions to<br>Optimize the Learning Environment            | Maxrizal Maxrizal, Sujono Sujono, Baiq Desy Aniska<br>Prayanti and Syafrul Irawadi                                                             |
| CS/I  | 79                                                               | New Approach of Covid-19 Prevention by<br>Implemented Combination of Decision Support<br>System Algorithm                               | Eddy Soeryanto Soegoto, Yeffry Handoko Putra,<br>Rahma Wahdiniwaty, Zuriani Ahmad Zukarnain and<br>Noorihan Abdul Rahman                       |
| CS/I  | 101                                                              | Grading Problem-Solving for Clustering Students'<br>Score Using Dynamic Programming Procedure in<br>The Context of Dynamic Time Warping | Mochamad Nizar Palefi Ma'Ady, Tabina Shafa<br>Nabila Syahda, Muhammad Nasrullah, Anindya<br>Salwa Salsabila, Ully Asfari and Hawwin Mardhiana  |
| CS/I  | 103                                                              | Preprocessing 7-Phases Based On Extractive Text Summarization                                                                           | Adhika Pramita Widyassari, Noersasongko Edy,<br>Syukur Abdul and Affandy                                                                       |
| SE    | 107                                                              | Blockchain-Based Multiple Server Database<br>System Prototype on BMKG Automatic Weather<br>Station (AWS) Center Architecture            | Handi Sutriyan, Agung Sunaryadi and Marzuki<br>Sinambela                                                                                       |
| SE    | 135                                                              | Games for Scrum Team Collaboration in the<br>Global Software Development Environment: A<br>Literature Review                            | Anita Hidayati, Iklima Ermis Ismail, Ade Rahma Yuly<br>and Henry Edison                                                                        |
| SE    | 16                                                               | Designing Mobile Banking Prototype Using Design<br>Thinking Approach (Case Study: BPD Bali Mobile)                                      | A. A. Istri Ita Paramitha, I Ketut Agus Juliana, Ketut<br>Queena Fredlina, Helmy Syakh Alam, I Made Artana<br>and I Nyoman Yudi Anggara Wijaya |
| IS/IT | 227                                                              | Implementation of One Data-based Lecturer<br>Profile Information System for Key Performance<br>Indicator Monitoring                     | Hery Dian Septama, Muhamad Komarudin, Puput<br>Budi Wintoro, Mahendra Pratama, Titin Yulianti and<br>Wahyu Eko Sulistiono                      |

| Track 8                      |
|------------------------------|
| Chair: Sunny Arief Sudiro    |
| Host: Ni Nyoman Yuspita Dewi |

| IS/IT | 44  | User Experience Analysis Using Usability Testing on<br>Library and Knowledge Center BINUS University with<br>SmartPLS                              | Dyaz Aerlangga, Rifky Muhammad Arsy,<br>Gunawan Sunardy and Teguh Prasandy                                                |
|-------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| IS/IT | 106 | Evaluation of Acceptance of the Use of Social Media<br>on the Application of Blended Learning in Private<br>Higher Education in Indonesia          | Fahmi Yusuf, Aang Subiyakto and Titik Khawa<br>Abdul Rahman                                                               |
| IS/IT | 85  | Gamification using Octalysis Framework in Knowledge<br>Management System for Vocational High Schools<br>during the Covid-19 Pandemic               | Mgs. Afriyan Firdaus, Dwi Rosa Indah, Yoppy<br>Sazaki, Eka Prasetyo Ariefin, Muhammad Fachri<br>Nuriza and Muhammad Rafly |
| IS/IT | 224 | YoBagi's User Experience Evaluation using User<br>Experience Questionnaire                                                                         | Fransiskus Panca Juniawan, Dwi Yuny Sylfania,<br>Rendy Rian Chrisna Putra and Henderi Henderi                             |
| CS/I  | 2   | Random Forest Classifier Based on Genetic Algorithm<br>Optimization for Heart Failure Prediction                                                   | <u>Maria Ulfah Siregar, Ichsan Setiawan,</u><br>Najmunda Zia Akmal and Dewi Wisnu Wardani                                 |
| CS/I  | 40  | Prediction of Automobiles Prices Using Exploratory<br>Data Analysis Based on Improved Machine Learning<br>Techniques                               | Fadhil Muhammad Basysyar, Ferisanti Ferisanti,<br>Maryam Wulandari, Indah Sucitra, Dian Ade<br>Kurnia and Solikin Solikin |
| CS/I  | 62  | Air Temperature Prediction Using Autoregressive<br>Artificial Neural Network Method with Variations of The<br>Number of Hidden Layer               | Christine Lusiana Debataraja, Mudrik Alaydrus<br>and Umaisaroh Umaisaroh                                                  |
| CS/I  | 73  | Spelling Correction Using the Levenshtein Distance<br>and Nazief and Adriani Algorithm for Keyword Search<br>Process Indonesian Qur'an Translation | Muhammad Iskandar Yahya, Arini Arini, Victor<br>Amrizal and lik Muhamad Malik Matin                                       |

## Paper ID #84

## Apri Siswanto Oil Well Monitoring System Based on IoT Technology and Machine Learning

## Abstract -

The process of crude oil mining in oil wells takes a long time and requires good supervision to avoid unwanted things. This process requires full 24-hours monitoring of oil parameters such as oil temperature and flow rate. Currently, the supervision process is still done manually which may occur some errors. Based on this fact, this paper aims to design a surveillance or monitoring system that is more effective and efficient. The testing of this monitoring system uses an oil pump machine prototype with the assistance of a MAX-6675 temperature sensor and an ultrasonic flowmeter TUF-2000m as well as a sensor TM-1 transducer as an input tool. Raspberry Pi 3 as a microcontroller and a web application as an output that displays data in the form of graphs. The test stage is carried out by heating the temperature sensor, slowing down the flow of oil on the prototype, and checking the values displayed on the graph. The results of the test when the temperature sensor received heat, the microcontroller ran well, as evidenced by the data that was successfully stored on the web server and a graph showing the increase in the oil temperature value. Likewise with the flow rate sensor when it receives resistance or the flow is slowed down, the graph shows a decrease in the flow rate value in the oil. With the results of this test, the prototype of the monitoring system on oil wells with the Internet of Things (IoT) technology runs as expected, namely being able to monitor the value of oil parameters in real-time which allows effectiveness and efficiency in work to increase.

Keywords: Oil Well, Monitoring System, Internet of Things



## Oil Well Monitoring System Based on IoT Technology and Machine Learning

Evizal Abdul Kadir Department of Informatics Engineering Universitas Islam Riau Pekanbaru, 28284 Indonesia evizal@eng.uir.ac.id

Agus Arsad UTM-MPRC Institute for Oil and Gas Universiti Teknologi Malaysia Johor Bahru, 81310 Malaysia agus@utm.my Muslim Abdurrahman Department of Petroleum Engineering Universitas Islam Riau Pekanbaru, 28284 Indonesia muslim@eng.uir.ac.id

Sri Listia Rosa Department of Informatics Engineering Universitas Islam Riau Pekanbaru, 28284 Indonesia srilistiarosa@eng.uir.ac.id Sharul Kamal Abdul Rahim Wireless Communication Centre Universiti Teknologi Malaysia Johor Bahru, 81310 Malaysia sharulkamal@fke.utm.my

Apri Siswanto Department of Informatics Engineering Universitas Islam Riau Pekanbaru, 28284 Indonesia aprisiswanto@eng.uir.ac.id

Abstract — The process of crude oil mining in oil wells takes a long time and requires good supervision to avoid unwanted things. This process requires full 24-hours monitoring of oil parameters such as oil temperature and flow rate. Currently, the supervision process is still done manually which may occur some errors. Based on this fact, this paper aims to design a surveillance or monitoring system that is more effective and efficient. The testing of this monitoring system uses an oil pump machine prototype with the assistance of a MAX-6675 temperature sensor and an ultrasonic flowmeter TUF-2000m as well as a sensor TM-1 transducer as an input tool. Raspberry Pi 3 as a microcontroller and a web application as an output that displays data in the form of graphs. The test stage is carried out by heating the temperature sensor, slowing down the flow of oil on the prototype, and checking the values displayed on the graph. The results of the test when the temperature sensor received heat, the microcontroller ran well, as evidenced by the data that was successfully stored on the web server and a graph showing the increase in the oil temperature value. Likewise with the flow rate sensor when it receives resistance or the flow is slowed down, the graph shows a decrease in the flow rate value in the oil. With the results of this test, the prototype of the monitoring system on oil wells with the Internet of Things (IoT) technology runs as expected, namely being able to monitor the value of oil parameters in real-time which allows effectiveness and efficiency in work to increase.

#### Keywords-Oil Well, Monitoring System, Internet of Things

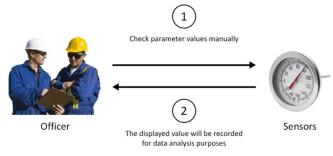
### I. INTRODUCTION

Energy is an important part of human life, without enough energy economic activity will slow down. Most of the energy used by humans comes from fossils, one of which is crude oil. This oil has been separated from natural gas after the extraction or mining process because crude oil is found together with natural gas [1]. Crude oil is a non-renewable natural resource, in the form of a dark brown or dark brown liquid or it can be greenish and has several very complex carbon chains, therefore crude oil is of high economic value. Data based on the central statistics agency shows that crude oil production in Indonesia in 2020 reached 259 million barrels [2]. Meanwhile, crude oil reserves reached 4.17 billion barrels. This figure certainly illustrates that the production of crude oil and natural gas in Indonesia is still very large. However, the oil reserve does not mean that it can be obtained easily, the process of extracting oil from oil wells requires a systematic process and design of tools, starting from the design of pipes, pumps, and monitoring sensors that are very necessary. The process of extracting crude oil or fluids from production wells (oil wells) through a piping system is carried out in two ways, namely by using the individual system, flow line or by using a production line system is pumped to the Gathering Station (GS), the type of equipment used in the GS is generally largely determined by the parameters of temperature, pressure, and the resulting fluid.

Several works have been done the previous research related to the oil well monitoring system in a petroleum company, especially in the downstream process. Research on the monitoring of oil parameters and indicators for example liquid flow rate in the pipeline as discussed in [3-7]. The research monitors for a parameter and then sends the information to a database at the data center. While other research is to monitor oil well parameters using an ultrasonic sensor to find the values of flow and water content as elaborate in the [8-10], the discussion the how much sensitivity in the sensor to various sample pipeline sizes. The size and thickness of the pipe affected the sensitivity and reading of the sensor to the actual flow rate, a calibration in measurement and testing is required to achieve actual values. In the [11-12] discussion on monitoring water content in a pipeline near to oil well, the research to find how much water percentage in a well then, the percentage of oil from the pump at the oil well. While [13-14] elaborates on the flow sensing system to detect and monitor abnormality in a pipeline at the oil well. The discussion of the oil well monitoring system to retrieve well information for example pump status, voltage, current, and flow as well as the temperature as discussed in the [15-16].

This research aims to design a new model of a monitoring system for oil wells using IoT and store all the well data and information in a cloud system. Wireless monitoring systems apply to get the information that is a constraint for the remote location of the well. The proposed monitoring system has a new design with several sensor connected to each other's then sending all the information to the backend system for analysis as well as displaying the information on the command center.

#### II. MONITORING AND SYSTEM DESIGN


Currently, the monitoring system on the oil well is running on the conventional method in which every sensor installed in each pipe will be checked by the officer periodically or manually written to find out the value of the parameters generated by the crude oil extraction process, sometimes even checking is only done when a problem occurs that does not occur. wanted. Figure 1 shows the illustrated of the physical oil well on the field for pumping the oil from the ground.

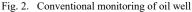



Fig. 1. Illustrated of oil well on the field and parts to monitor

#### A. Conventional Oil Well Monitoring System

The value of the oil well parameter will determine various things such as production level, pipe safety, and so on. Based on the analysis of the current system, the following is an overview of the current system analysis. Figure 2 shows a conventional method of monitoring oil wells by directly visiting the site and recording manually on the sheet. Several instruments are installed on the oil well to monitor performance and production of the well, there are important parts to monitor such as temperature, flowrate, pump status, pressure including power supply which voltage and current supplied to well.





#### B. Digital Oil Well Monitoring System

The proposed new method is to monitor the oil well indicator by digitalizing the system by installing the sensor to all the equipment and parameter would like to check and measure. The procedure analysis of this system is necessary to know the current procedures for designing the new system. Figure 3 shows the design of the following is an overview of the current system and proposed digital system for the oil well.

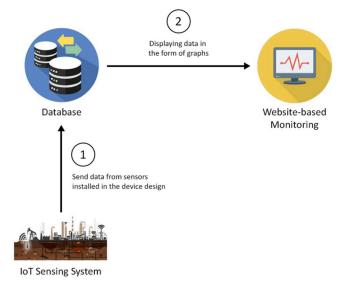



Fig. 3. Architecture of monitoring sytem in oil well

The use of an oil pump for the engine and prototype has many advantages, including minimizing the risk of accidents that could occur in the actual oil well area. In addition, by using a prototype, trials can be freely carried out many times and are not limited in time. The prototype that will be used is available in-house in the Laboratory, Faculty of Engineering, Islamic University of Riau. In this research, an ultrasonic flow meter model TUF-2000M was used with the help of a transducer model TM-1 which was installed with the method installation method. This sensor is installed on the outside of the pipe which is placed after the pump, and the temperature sensor used is the MAX-6675 sensor, installed into the pipe to read the temperature of the oil that is flowing. Here is the photo. Figure 4 shows the prototype of the oil well monitoring system while figuring 4(a) the full unit with a circulating pump system and figure 4(b) the sensor used in the prototype system for monitoring temperature and flow rate. The prototype can run as scenarios that we trying to simulate according to the actual operation on the field.



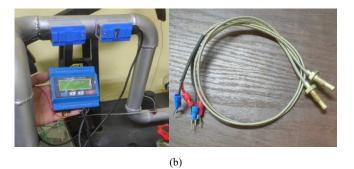



Fig. 4. Prototype of oil well monitoring system (a) the full unit of oil well with the circulate pump (b) sensor used in the prototype

The Raspberry Pi 4 microcontroller is needed in the initial data processing, its function is to receive data from sensors and forward it to the web server. The microcontroller sends data to the web server using a post request technique using the HTTP request library. The tool used and simulation has been done in the laboratory to check and monitor the system in a few days. Figure 5 shows a block diagram of the system and Raspberry Pi 4 microcontroller module used in this prototype of a system.

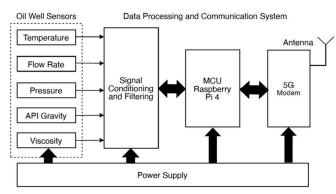



Fig. 5. Block diagram of monitoring sytem in oil well

System workflow design is a step-by-step process of describing how to sample test data sent within the system. And to produce oil, many processes are carried out and take a very long time, one of the processes is the extraction or mining process of oil, the results of which will be pumped into the GS through gathering pipes, and to find out how it works, a workflow design is made. The system workflow starts by checking the sensor and reading raw data using the flowrate sensor, this data will then be sent to the Raspberry Pi 3 microcontroller. After the data is received, the microcontroller will then check whether there is internet access, if there is data will be sent directly to the web server, else the data will be stored in the local database. All data stored in the local database will be sent to the web server when the microcontroller is connected to the internet. Figure 6 shows a flowchart of the entire monitoring process of the oil well in the field. All the data is stored in a database for accessing by the system in anytime at anywhere by pushing the data to a cloud computing.

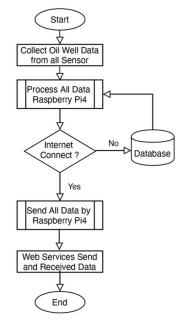



Fig. 6. Flowchart of the process of oil well monitoring

#### C. LSTM Algorithm

The proposed method is different compared to other techniques as discussed previously, in that the LSTM deep learning algorithm applied with a big number of training data and testing data achieves high accuracy forecasting results for the specific case in the Indonesia region. Python programming is used in simulation and analysis as it is one of the high-level programs with a fast process, and it is applied in many kinds of deep learning algorithms. Figure 7 shows the structure of the RNN of the LSTM Algorithm.

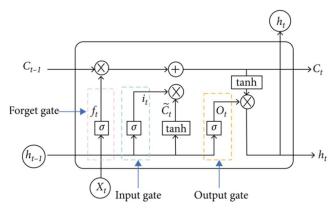



Fig. 7. Structure of the RNN-LSTM Algorithm

LSTM is divided in to two parts of the RNN's hidden state memory cell which the  $C_t$  and the  $h_t$  working memory. These memory cells are responsible for the retention of sequence features. The memory of the previous sequence is controlled by the forgetting gate f working memory, and  $h_t$  is used as output, and the output gate O controls the portion of the current memory  $C_t$  to be written as an input, *i* controls the portion of the current state information  $h_{t-1}$  and the current input  $X_t$  to be written to the memory cell. The three types of gates above are not static. The previous state information  $h_{t-1}$  and the current input  $X_t$  are determined together through nonlinear activation after linear combination. The LSTM model consists of three major cells, and each cell can be written as Equations (1)–(6).

$$f_t = \sigma (W_f . [h_{t-1}, x_t] + b_f)$$
(1)

$$i_t = \sigma (W_i . [h_{t-1}, x_t] + b_i)$$
 (2)

$$C_{t} = \tanh(W_{c} \cdot [h_{t-1}, x_{t}] + b_{c})$$
(3)

$$C_t = f_t * C_{t-1} + i_t * `C_t$$
 (4)

$$o_t = \sigma \left( W_o \left[ h_{t-1}, x_t \right] + b_o \right)$$
(5)

$$h_t = o_t * \tanh(C_t) \tag{6}$$

where  $w_f$ ,  $w_i$ ,  $w_c$ , and  $w_o$  are weight matrixes of  $b_f$ ,  $b_i$ ,  $b_c$ , and  $b_o$  are bias vectors,  $\tilde{c}_t$  is the new candidate sate generated by  $x_t$  and  $h_{t-1}$  through the *tanh* layer, and  $\sigma$  is the sigmoid activation function.

Figure 8 shows a complete prototype oil well system, while several sensors are embedded in the system to obtain actual data from the well. The prototype can demonstrate how the actual process in the well as the representative of the actual well in the site.

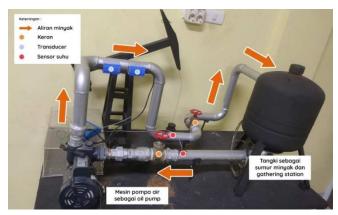




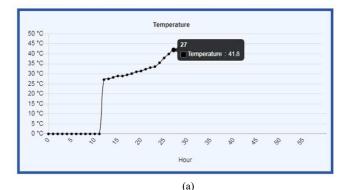
Fig. 8. Complete prototype of oil well monitoring system with process flow

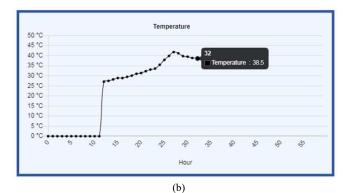
## III. RESULTS AND DISCUSSION

The results of the design of an oil well monitoring tool with the Internet of Things are as shown in figure 7 with the complete circulation system for testing in various scenarios as actual on the field. Testing of the temperature sensor will be tested with four tests, the first test is by heating the pipe using wax as a heat generator and the second test turning off the heater and letting the temperature or temperature of the oil drop, and the third and fourth tests are the same as the first test, only the test is not too hot so that there is the resulting difference. According to figure 9, it can be seen that the sensor is attached to the frame. The temperature sensor (red point) is located before and after the pump engine, the flowmeter using a transducer (blue point) is located after the pump engine, and the faucet (orange point) is located before and after the pump engine. Please note, when oil is sucked in by the pump, the tank is considered an oil well and when it has passed through the pump, the tank is considered a gathering station. The process of oil flow in this prototype is that the Oil pump (pump engine) will suck oil from the oil well (tank) so that the oil flows through the oil pump and then the oil will continue to flow until it enters the gathering station (tank). Figure 8 shows an interface of the oil well monitoring system



for the temperature and flowrate measurement.





Fig. 9. Sample of graphs as display in monitoring system

Based on this process, the function of the first temperature sensor is to check the temperature of the oil before it is mined, the value of this sensor is only for testing the tool and the oil itself. The value that will be taken for monitoring is the value of the second temperature sensor, the sensor located after passing the oil pump. The function of the flowmeter sensor is to take the flow rate value of the oil that flows after passing



through the pump engine, and the faucet function to test the flow rate value when there is an obstacle. Then finally, the results of the oil well monitoring web design are shown below. The results of the temperature sensor test will be displayed in graphical form in a monitoring web application. The graphic display can be seen in the image as shown in figure 10 (a), (b), and (c) for scenarios of temperature.





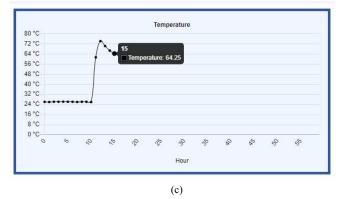
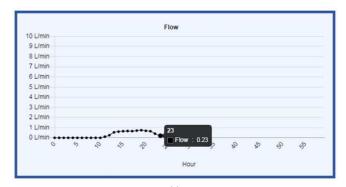
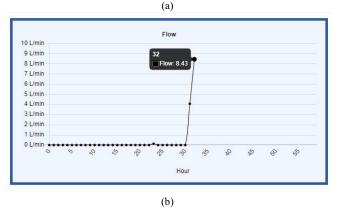





Fig. 10. Monitoring of oil well temperature in various scenarios (a) temperature 41.8 (b) temperature 38.5 degree (c) temperature 64.25 degree

While the flow rate sensor of the oil well and distribution pipe to the GS is measured in single line flow, the process is to monitor and retrieve sample data flow with duration every minute. Figure 11 (a), (b), and (c) shows a display of the measurement of flowrate in a pipe which is 0.23, 8.43, and 0.52 liters/minute, for the oil well monitoring system. This standard in the prototype unit is in unit liters/minute but in the actual field, the unit may be high liters/second or in oil barrels. The results of measurement flowrate to check and in actual situation to confirmation of the oil well is working fine to produce oil or the oil pump is working to supply oil to GS. Oil flow rate in a pipeline has an impact and indicator of the oil production, the normal flowrate has standard and may be different in every will, by the record and check the normality the production or failure of a well identified by the monitoring system. Current status of parameters be able to monitor in a prototype are temperature and flow rate as shows in figure 10 and 11. While the other parameters such as API, Viscosity, and pressure of crude oil in the pipeline still under conducting the research and will added to the prototype system once completed.





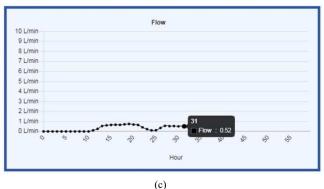



Fig. 11. Monitoring system of pipeline flowrate in an oil well (a) 0.23 (b) 8.43 (c) 0.53 liters/minute

#### IV. CONCLUSION

This research aims to monitor oil well status and equipment installed, the processes of designing, manufacturing, testing, and discussing oil well monitoring tools, it can be concluded several things such as an IoT-based oil well monitoring prototype was made using a Raspberry Pi 4 microcontroller with the help of a TUF-2000M flowrate sensor and a temperature sensor connected to a Web server. The process of monitoring temperature and flowmeter using the Raspberry Pi 4 as a bridge between the TUF-2000M sensor and the Web server. Data from the flowrate and temperature sensors are sent using the request post technique and successfully display by the web system. The future development of the system is to do parallel monitoring for numbers of oil well that achieve real-time monitoring concurrently to all well.

#### ACKNOWLEDGEMENT

We would like to express our gratitude to the Ministry of Education, Culture, Research and Technology of Indonesia for funding the research, Universiti Teknologi Malaysia, and Universitas Islam Riau, Indonesia for research facilities as matching grant collaboration.

#### REFERENCES

- Kesoema, Widhowati., Sulistiyaning, Harmin., "Studi Literatur Alternatif Penanganan Tumpahan Minyak Mentah Menggunakan Bacillus subtilis dan Pseudomonas putida (Studi Kasus: Tumpahan Minyak Mentah Sumur YYA-1)", Jurnal Teknik ITS, Vol.9, 2020.
- [2] Mustaghfirin, "Proses Produksi Migas, Kementerian Pendidikan dan Kebudayaan", 2013.
- [3] D. Wang, R. He, J. Han, M. Fattouche and F. M. Ghannouchi, "Sensor network-based oilwell health monitoring and intelligent control", IEEE Sensors J., vol. 12, no. 5, pp. 1326-1339, May 2012.
- [4] C. Tan, N. N.Wang, and F. Dong, "Oil-water two-phase flow pattern analysis with ERT based measurement and multivariate maximum Lyapunov exponent," J. Cent. South Univ., vol. 23, no. 1, pp. 240 248, Jan. 2016, doi: 10.1007/s11771-016-3067-3.
- [5] E. A. Kadir, A. Efendi, and S. L. Rosa, "Application of LoRa WAN Sensor and IoT for Environmental Monitoring in Riau Province Indonesia," in 2018 5th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 16-18 Oct. 2018 2018, pp. 281-285, doi: 10.1109/EECSI.2018.8752830.
- [6] G. Yang, Z. Ma, W. Xu, X. Huang and J. Zhou, "The development of drilling engineering monitoring system using wireless sensor networks", Przegląd Elektrotech., vol. 89, no. 1, pp. 37-40, 2013.
- [7] E. A. Kadir, S. M. Shamsuddin, S. Hasan, and S. L. Rosa, "Wireless monitoring for big data center server room and equipments," in 2015 International Conference on Science in Information Technology (ICSITech), 27-28 Oct. 2015 2015, pp. 187-191, doi: 10.1109/ICSITech.2015.7407801.
- [8] M. M. F. Figueiredo, J. L. Goncalves, A. M. V. Nakashima, A. M. F. Fileti, and R. D. M. Carvalho, "The use of an ultrasonic technique and neural networks for identi cation of the flow pattern and measurement of the gas volume fraction in multiphase flows," Experiment. Thermal Fluid Sci., vol. 70, pp. 29 50, 2016.
- [9] E. A. Kadir, H. Irie, S. L. Rosa, B. Saad, S. K. A. Rahim, and M. Othman, "Remote Monitoring of River Water Pollution Using Multiple Sensor System of WSNs and IoT," in Sensor Networks and Signal Processing, Singapore, S.-L. Peng, M. N. Favorskaya, and H.-C. Chao, Eds., 2021// 2021: Springer Singapore, pp. 99-113.
- [10] H. J. Park, Y. Tasaka, and Y. Murai, "Ultrasonic pulse echography for bubbles traveling in the proximity of a wall," Meas. Sci. Technol., vol. 26, no. 12, p. 125301, 2015.
- [11] C. Zhao, G. Wu, and Y. Li, "Measurement of water content of oilwater two-phase flows using dual-frequency microwave method in combination with deep neural network," Measurement, vol. 131, pp. 92–99, Jan. 2019, doi: 10.1016/j.measurement.2018.08.028.
- [12] E. A. Kadir, H. Irie, and S. L. Rosa, "Modeling of Wireless Sensor Networks for Detection Land and Forest Fire Hotspot," in 2019 International Conference on Electronics, Information, and

Communication (ICEIC), 22-25 Jan. 2019 2019, pp. 1-5, doi: 10.23919/ELINFOCOM.2019.8706364.

- [13] P. Angeli and G. F. Hewitt, "Flow structure in horizontal oil-water flow," Int. J. Multiphase Flow, vol. 26, pp. 1117 1140, Jul. 2000, doi: 10.1016/s0301-9322(99)00081-6.
- [14] E. A. Kadir, M. Othman, and S. L. Rosa, "Smart Sensor System for Detection and Forecasting Forest Fire Hotspot in Riau Province Indonesia," in 2021 International Congress of Advanced Technology and Engineering (ICOTEN), 4-5 July 2021 2021, pp. 1-6, doi: 10.1109/ICOTEN52080.2021.9493535.
- [15] T. Nakashima, T. Shiratori, Y. Murai, Y. Tasaka, Y. Takeda, and E. J. Windhab, "Viscoelastic responses of flow driven by a permeable disk investigated by ultrasound velocity pro ling," Flow Meas. Instrument., vol. 48, pp. 97–103, Apr. 2016.
- [16] E. A. Kadir, S. L. Rosa, and R. A. Ramadhan3, "Detection of Forest Fire Used Multi Sensors System for Peatland Area in Riau Province," in 6th International Conference on Industrial Mechanical Electrical Chemical Engineering 2020, Surakarta, Indonesia, W. Sutopo, Ed., 2020: AIP Conference Proceedings.



**APTIKOM** 

# Oil Well Monitoring System Based on IoT Technology and Machine Learning

at the 7th International Conference on Informatics and Computing (ICIC 2022) held between 08-09 December 2022 at Bali







# This is to certify that

Evizal Abdul Kadir, Muslim Abdurrahman, Sharul Kamal Abdul Rahim, Agus Arsad, Sri Listia Rosa, dan Apri Siswanto

has written the Paper titled



