PROCEEDINGS

The Second International Conference on Science, Engineering and Technology

SET 2019

"Sustainable Development in Developing Country for Facing Industrial Revolution 4.0"

September 5-7, 2019 SKA Convention & Exhibition Center, Pekanbaru, Riau, Indonesia

Bank Name: Bank Syariah Mandiri Bank Account Number: 7131069493 Branch: KK UIR Pekanbaru Branch Address: JI. Kaharuddin Nasution No.113, Komp UIR SWIFT Code: BSMDIDJA

Please transfer the full registration fee to our account and you will be responsible to pay for any bank charges incurred. Please note that the fee must be transferred under the registrant's name and should be stated clearly on the payment slip. Please include the paper ID information on the payment slip. Copy of the payment slip of the bank remittance must be emailed to conference@uir.ac.id for payment confirmation, with an email header / title "ICoSET – {paper ID}". for detail information, please contact us via email: conference@uir.ac.id

ORGANIZING COMMITTEE

Steering Committee

- Prof. Dr. H Syafrinaldi SH, MCL (Universitas Islam Riau, Indonesia) (https://scholar.google.com/citations?user=vyNCL9AAAAJ&hl=en&oi=sra) (https://scholar.google.com/citations?user=vyNCL9AAAAJ&hl=en&oi=sra)
- (https://scholar.google.com/citations?user=vyNCL9AAAAAJ&hl=en&oi=sra)Prof. Toru Ishida (Kyoto University, Japan) (http://www.ai.soc.i.kyoto-u.ac.jp/~ishida/)
- Prof. Ee-Peng Lim (Singapore Management University, Singapore) (https://scholar.google.com/citations?user=r0wOAikAAAAJ&hl=en)
- Prof. Ir. Dr Sharul Kamal Abdul Rahim (Universiti Teknologi Malaysia, Malaysia) (https://www.scopus.com/authid/detail.uri?authorld=16025721900)
- Prof. Josaphat Tetuko Sri Sumantyo, Ph.D (Chiba University, Japan) (https://scholar.google.com/citations?hl=en&user=mHBpxUsAAAAJ)

General Chair

• Dr. Arbi Haza Nasution, M.IT (Universitas Islam Riau, Indonesia) (https://scholar.google.com/citations?hl=en&user=I-wxoBYAAAAJ)

General Co-Chair

 Dr. Eng. Muslim, ST., MT - (Universitas Islam Riau, Indonesia) (https://scholar.google.com/citations?user=-5BNcU8AAAAJ&hl=en&oi=sra)

Technical Programme Chair

ICoSET 2019

 Dr. Evizal Abdul Kadir, ST., M.Eng (Universitas Islam Riau, Indonesia) (https://scholar.google.com/citations?hl=en&user=lvncBFcAAAAJ)

Programme Committee

- Prof. Dr. Tengku Dahril, M.Sc (Universitas Islam Riau, Indonesia) (https://scholar.google.co.id/citations?user=6yV21REAAAAJ&hl=en) (https://scholar.google.co.id/citations?user=6yV21REAAAAJ&hl=en)
- (https://scholar.google.co.id/citations?user=6yV21REAAAAJ&hl=en)Prof. Dr. Hasan Basri Jumin, M.Sc - (Universitas Islam Riau, Indonesia) (https://scholar.google.com/citations?user=kQDyht0AAAAJ&hl=en) (https://scholar.google.com/citations?user=kQDyht0AAAAJ&hl=en)
- (https://scholar.google.com/citations?user=kQDyht0AAAAJ&hl=en)Prof. Dr. Sugeng Wiyono, MMT - (Universitas Islam Riau, Indonesia) (https://scholar.google.co.id/citations?user=XA6V0bsAAAAJ&hl=en) (https://scholar.google.co.id/citations?user=XA6V0bsAAAAJ&hl=en)
- (https://scholar.google.co.id/citations?user=XA6V0bsAAAAJ&hl=en)Prof. Zainal A. Hasibuan, MLS., Ph.D - (University of Indonesia, Indonesia) (https://scholar.google.co.id/citations?user=tpzw4SgAAAAJ&hl=en) (https://scholar.google.co.id/citations?user=tpzw4SgAAAAJ&hl=en)
- (https://scholar.google.co.id/citations?user=tpzw4SgAAAAJ&hl=en)Prof. Josaphat Tetuko Sri Sumantyo, Ph.D - (Chiba University, Japan) (https://scholar.google.co.id/citations?user=mHBpxUsAAAAJ&hl=en&oi=ao) (https://scholar.google.co.id/citations?user=mHBpxUsAAAAJ&hl=en&oi=ao)
- (https://scholar.google.co.id/citations?user=mHBpxUsAAAAJ&hl=en&oi=ao)Prof. Dr. Eko Supriyanto - (Universiti Teknologi Malaysia, Malaysia) (https://scholar.google.com.my/citations?user=5JBLV3AAAAAJ&hl=en) (https://scholar.google.com.my/citations?user=5JBLV3AAAAAJ&hl=en)
- (https://scholar.google.com.my/citations?user=5JBLV3AAAAJ&hl=en)Prof. Dr. Zailuddin Arifin - (Universiti Teknologi MARA, Malaysia)
- Prof. Jhon Lee, B.Sc, M.Sc., Ph.D (Kyungdong University Korea) (https://scholar.google.com/citations?user=H1xJbvMAAAAJ&hl=id) (https://scholar.google.com/citations?user=H1xJbvMAAAAJ&hl=id)
- (https://scholar.google.com/citations?user=H1xJbvMAAAAJ&hI=id)Prof. Ahmed A. Al Absi
 (Kyungdong University Korea) (https://scholar.google.com/citations? user=GCxzsogAAAAJ&hI=en)
 (https://scholar.google.com/citations?user=GCxzsogAAAAJ&hI=en)
- (https://scholar.google.com/citations?user=GCxzsogAAAAJ&hl=en)Prof. Wisup Bae, Ph.D - (Sejong University, Korea)
- Prof. Kyuro Sasaki (Kyushu University, Japan) (https://scholar.google.com/citations?user=RidGLtUAAAAJ&hl=id) (https://scholar.google.com/citations?user=RidGLtUAAAAJ&hl=id)
- (https://scholar.google.com/citations?user=RidGLtUAAAAJ&hl=id)Prof. Adiwijaya -(Telkom University, Indonesia) (https://scholar.google.co.id/citations? user=zkaTrOE0rbwC&hl=en)

•	(https://scholar.google.co.id/citations?user=zkaTrOE0rbwC&hl=en) (https://scholar.google.co.id/citations?user=zkaTrOE0rbwC&hl=en)Prof. Ir. Asep Kurnia
	Permadi, M. Sc, Ph.D - (Institut Teknologi Bandung, Indonesia)
	(https://www.researchgate.net/profile/Asep_Permadi)
	(https://www.researchgate.net/profile/Asep_Permadi)
•	(https://www.researchgate.net/profile/Asep_Permadi)Assoc. Prof. Dr. Azhan Hashim
	Ismail (Universiti Teknologi MARA, Malaysia)
	(https://scholar.google.com.my/citations?user=irGmToYAAAAJ&hl=en)
	(https://scholar.google.com.my/citations?user=irGmToYAAAAJ&hl=en)
•	(https://scholar.google.com.my/citations?user=irGmToYAAAAJ&hl=en)Assoc. Prof. Yuichi
	Sugai - (Kyushu University, Japan) (https://scholar.google.com/citations?

user=BWeV_Q4AAAAJ&hl=en)

(https://scholar.google.com/citations?user=BWeV_Q4AAAAJ&hl=en)

- (https://scholar.google.com/citations?user=BWeV_Q4AAAAJ&hl=en)Assoc. Prof. Dr. Sonny Irawan (Universiti Teknologi Petronas, Malaysia) (https://scholar.google.co.id/citations?user=ljHO3J4AAAAJ&hl=id) (https://scholar.google.co.id/citations?user=ljHO3J4AAAJ&hl=id)
- (https://scholar.google.co.id/citations?user=ljHO3J4AAAAJ&hl=id)Assoc. Prof. Hussein Hoteit (King Abdullah University of Science and Technology, Saudi Arabia) (https://scholar.google.com/citations?user=e6KK_P4AAAAJ&hl=en) (https://scholar.google.com/citations?user=e6KK_P4AAAJ&hl=en)
- (https://scholar.google.com/citations?user=e6KK_P4AAAAJ&hl=en)Assoc. Prof. Dr. Anas Puri, ST., MT - (Universitas Islam Riau, Indonesia) (https://scholar.google.co.id/citations?user=DTGbUogAAAAJ&hl=en) (https://scholar.google.co.id/citations?user=DTGbUogAAAJ&hl=en)
- (https://scholar.google.co.id/citations?user=DTGbUogAAAAJ&hl=en)Kuen-Song Lin, Ph.D

 (Yuan Ze University, Taiwan) (https://scholar.google.com.tw/citations?hl=zh-TW&user=_xGZjCQAAAAJ&view_op=list_works&sortby=pubdate) (https://scholar.google.com.tw/citations?hl=zh-TW&user=_xGZjCQAAAAJ&view_op=list_works&sortby=pubdate)
- (https://scholar.google.com.tw/citations?hl=zh-TW&user=_xGZjCQAAAAJ&view_op=list_works&sortby=pubdate)Dr. Shukor Sanim Mohd Fauzi (Universiti Teknologi MARA, Malaysia) (https://scholar.google.com/citations?user=kekCT9IAAAAJ&hl=en) (https://scholar.google.com/citations?user=kekCT9IAAAAJ&hl=en)
- (https://scholar.google.com/citations?user=kekCT9IAAAAJ&hl=en)Dr. Inkyo Cheong -(Inha University, Korea) (http://www.ftainfo.net/eng/) (http://www.ftainfo.net/eng/)
- (http://www.ftainfo.net/eng/)Ahn, Young Mee, Ph.D (Inha University, Korea)
- Hitoshi Irie, Ph.D (Chiba University, Japan) (https://scholar.google.co.jp/citations?user=BcDlekAAAAJ&hl=ja) (https://scholar.google.co.jp/citations?user=BcDlekAAAAJ&hl=ja)
- (https://scholar.google.co.jp/citations?user=BcDlekAAAAAJ&hl=ja)Julie Yu-Chih Liu,
 Ph.D (Yuan Ze University, Taiwan) (https://scholar.google.com.sg/citations?

	1000212010
	user=8TEk1X8AAAAJ&hl=en)
	(https://scholar.google.com.sg/citations?user=8TEk1X8AAAAJ&hl=en)
•	(https://scholar.google.com.sg/citations?user=8TEk1X8AAAAJ&hl=en)Liang Chih Yu,
	Ph.D - (Yuan Ze University, Taiwan) (https://scholar.google.com/citations?
	user=ACYmxKgAAAAJ&hl=en)
	(https://scholar.google.com/citations?user=ACYmxKgAAAAJ&hl=en)
٠	(https://scholar.google.com/citations?user=ACYmxKgAAAAJ&hl=en)Chia-Yu Hsu, Ph.D -
	(Yuan Ze University, Taiwan) (https://scholar.google.com/citations?
	user=I23ksWUAAAAJ&hI=en)
	(https://scholar.google.com/citations?user=I23ksWUAAAAJ&hI=en)
•	(https://scholar.google.com/citations?user=I23ksWUAAAAJ&hI=en)Dr. Amit Pariyar -
	(University Malaysia Sarawak, Malaysia) (https://scholar.google.co.in/citations?
	user=Oop4ilQAAAAJ&hl=en)
	(https://scholar.google.co.in/citations?user=Oop4ilQAAAAJ&hl=en)
٠	(https://scholar.google.co.in/citations?user=Oop4ilQAAAAJ&hl=en)Dr. Madi Abdullah
	Naser - (Sebha University, Libya)
•	Dr. Nguyen Xuan Huy - (Ho Chi Minh City University of Technology, Vietnam)
	(https://scholar.google.com.vn/citations?user=CKUUSwEAAAAJ&hl=vi)
	(https://scholar.google.com.vn/citations?user=CKUUSwEAAAAJ&hI=vi)
٠	(https://scholar.google.com.vn/citations?user=CKUUSwEAAAAJ&hl=vi)Dr. Chunqiu Li -
	(Beijing Normal University, China) (https://scholar.google.com/citations?
	user=b8sYKJIAAAAJ&hl=en)
	(https://scholar.google.com/citations?user=b8sYKJIAAAAJ&hI=en)
٠	(https://scholar.google.com/citations?user=b8sYKJIAAAAJ&hI=en)Dr. Goh Thian Lai -
	(Universiti Kebangsaan Malaysia, Malaysia)
	(https://scholar.google.com/citations?user=dlz4g9wAAAAJ&hl=en)
	(https://scholar.google.com/citations?user=dlz4g9wAAAAJ&hl=en)
٠	(https://scholar.google.com/citations?user=dlz4g9wAAAAJ&hl=en)Dr. Syahrir Ridha
	(Universiti Teknologi Petronas) (https://scholar.google.com/citations?
	user=ttSY4KwAAAAJ&hI=id)

- (https://scholar.google.com/citations?user=ttSY4KwAAAAJ&hl=id)
- (https://scholar.google.com/citations?user=ttSY4KwAAAAJ&hl=id)Dr. Kemas Muslim L. -(Telkom University, Indonesia) (https://scholar.google.co.id/citations?user=-Az5738AAAAJ&hl=id)

(https://scholar.google.co.id/citations?user=-Az5738AAAAJ&hl=id)

- (https://scholar.google.co.id/citations?user=-Az5738AAAAJ&hl=id)Dr. Moch. Arif Bijaksana - (Telkom University, Indonesia) (https://scholar.google.com/citations? user=eQIK7QkAAAAJ&hl=id) (https://scholar.google.com/citations?user=eQIK7QkAAAAJ&hl=id)
- (https://scholar.google.com/citations?user=eQIK7QkAAAAJ&hl=id)Dr. Satria Mandala -(Telkom University, Indonesia) (https://scholar.google.com/citations? user=0JiEa_4AAAAJ&hl=id)

(https://scholar.google.com/citations?user=0JiEa_4AAAAJ&hl=id)

ICoSET 2019

- (https://scholar.google.com/citations?user=0JiEa_4AAAAJ&hl=id)Dr. Wahyudi Sutopo -(Solo State University, Indonesia) (https://scholar.google.co.id/citations? user=wYQMP-EAAAAJ&hl=en) (https://scholar.google.co.id/citations?user=wYQMP-EAAAAJ&hl=en)
- (https://scholar.google.co.id/citations?user=wYQMP-EAAAAJ&hl=en)Dr. Zulfatman -(University of Muhammadyah Malang, Indonesia) (https://scholar.google.com.my/citations?user=qBVdv1kAAAAJ&hl=en) (https://scholar.google.com.my/citations?user=qBVdv1kAAAAJ&hl=en)
- (https://scholar.google.com.my/citations?user=qBVdv1kAAAAJ&hl=en)Dr. Suranto AM -(UPN Veteran Yogyakarta, Indonesia) (https://scholar.google.co.id/citations? user=M7F6OFvtsIIC&hl=en)

(https://scholar.google.co.id/citations?user=M7F6OFvtsIIC&hl=en)

 (https://scholar.google.co.id/citations?user=M7F6OFvtsIIC&hl=en)Dr. Eng. Husnul Kausarian, B.Sc (Hons)., M.Sc - (Universitas Islam Riau, Indonesia) (https://scholar.google.co.id/citations?user=wfa0gW8AAAAJ&hl=id) (https://scholar.google.co.id/citations?user=wfa0gW8AAAAJ&hl=id)

Publication and Relationship Chair (https://scholar.google.co.id/citations?

user=wfa0gW8AAAAJ&hI=id)

- (https://scholar.google.co.id/citations?user=wfa0gW8AAAAJ&hl=id)
- (https://scholar.google.co.id/citations?user=wfa0gW8AAAAJ&hl=id)Dr. Syafriadi, S.H.,
 M.H. (Universitas Islam Riau, Indonesia)

Financial Chair

• Ause Labellapansa, ST., M.Cs., M.Kom (Universitas Islam Riau, Indonesia) (https://scholar.google.co.id/citations?user=tFaFz20AAAJ&hl=en)

Editorial Chair

• Yudhi Arta, S.Kom., M.Kom. (Universitas Islam Riau, Indonesia) (https://scholar.google.co.id/citations?user=5W5gl-EAAAAJ&hl=id)

Editorial Board

- Khairul Umam Syaliman, S.T., M.Kom (Universitas Islam Riau, Indonesia)
- Winda Monika, S.Pd., M.LIS (Universitas Islam Riau, Indonesia) (https://scholar.google.com/citations?user=OcrvgOIAAAAJ&hl=en&oi=ao)
- Panji Rachmat Setiawan, S.Kom., M.M.S.I. (Universitas Islam Riau, Indonesia)
- Rizdqi Akbar Ramadhan, S.Kom., M.Kom. (Universitas Islam Riau, Indonesia)
- Anggiat (Universitas Islam Riau, Indonesia)
- Arif Lukman Hakim (Universitas Riau, Indonesia)

ORGANIZER

Proceedings

Proceedings of the Second International Conference on Science, Engineering and Technology

September 5-7, 2019, in Riau, Indonesia

Editors: Arbi Haza Nasution ; Evizal Abdul Kadir and Luiz Moutinho

Affiliation: Department of Informatics Engineering, Faculty of Engineering, Universitas Islam Riau, Pekanbaru, Indonesia

ISBN: 978-989-758-463-3

Conference Link: http://icoset.uir.ac.id/2019/

Foreword: In the name of Allah, Most Gracious, Most Merciful Assalamu'alaikum Wr. Wb., Welcome to the Second International Conference on Science Engineering and Technology (ICoSET 2019). The advancement of today's computing technology, science, engineering and industrial revolution 4.0 play a big role in the sustainable development of social, economic, education, and humanity in developing countries. Institute of higher education is one of many parties that need to be involved in the process. Academicians and researchers should promote the concept of sustainable development. The Second International Conference on Science,

Engineering and Technology (ICoSET 2019) is organized to gather researchers to disseminate their relevant work on science, engineering and technology. The conference is co-located with The Second International Conference on Social, Economy, Education, and Humanity (ICoSEEH 2019) at SKA Co-EX Pekanbaru Riau. I would like to express my hearty gratitude to all participants for coming, sharing, and presenting your research at this joint conference. There is a total of 84 manuscripts submitted to ICoSET 2019. However only high-quality selected papers are accepted to be presented in this event, with the acceptance rates of ICoSET 2019 is 70%. We are very grateful to all steering committees and both international and local reviewers for their valuable work. I would like to give a compliment to all co-organizers, publisher, and sponsors for their incredible supports. Organizing such prestigious conferences was very challenging and it would be impossible to be held without the hard work of the program committee and organizing committee members. I would like to express my sincere gratitude to all committees and volunteers from Singapore Management University, Kyoto University, Kyushu University, University of Tsukuba, Khon Kaen University, Ho Chi Minh City University of Technology, University of Suffolk, Universiti Teknologi Malaysia, Infrastructure University Kuala Lumpur, Universiti Malaya, Universiti Kebangsaan Malaysia, Universiti Utara Malaysia, Universiti Teknologi Mara, and Universiti Pendidikan Indonesia for providing us with so much support, advice, and assistance on all aspects of the conference. We do hope that this event will encourage collaboration among us now and in the future. We wish you all find the opportunity to get rewarding technical programs, intellectual inspiration, and extended networking. Pekanbaru, 27th August 2019 Dr. Arbi Haza Nasution, M.IT Chair of ICoSET 2019 (Less)

Volumes:

Vol. 1 - 978-989-758-463-3

Papers Authors		
Show All 🗸 papers		
Design of Community-based Ecotourism at Cengkehan and Giriloy Wukirsari Village, Imogiri District, Bantul Regency, Special Region Yogyakarta	o, of	P. 5 - 10
Suhartono , Sri Mulyaningsih , Desi Kiswiranti , Sukirman , Nurwidi A. A. T. Heriyadi , Muchlis and Iva Mindhayani	DOI: 10.522	0/000900390
Prototype Storage Locker Security System based on Fingerprint an Technology	d RFID	P. 11 - 14
Apri Siswanto , Hendra Gunawan and Rafiq Sanjaya	DOI: 10.522	0/00090629
Feasibility Study of CO2 Flooding under Gross-split Mechanism: Si Approach	mulation	P. 15 - 19
Muslim Abdurrahman , Wisup Bae , Adi Novriansyah , Dadan Damayandri and Bop Duana Afrireksa	DOI: 10.522	0/000906320
Online Classroom Attendance System based on Cloud Computing		P. 20 -
Sri Listia Rosa and Evizal Abdul Kadir	DOI: 10.522	25 0/000906390

Analysis of Porosity and Permeability on Channel Deposit Sandstor Pore-gas Injection and Point Counting in Sarilamak Area, West Sum	ne using natra	P. 26 - 30
Bayu Defitra , Tiggi Choanji and Yuniarti Yuskar	DOI: 10.5220	0/000906470
A Simulation Study of Downhole Water Sink Guidelines Plot Applic using Real Field Data	ation	P. 31 - 34
Praditya Nugraha	DOI: 10.5220)/000906550
Groundwater Exploration using 2D Electrical Resistivity Imaging (EF Kulim, Kedah, Malaysia	RI) at	P. 35 - 40
Adi Suryadi , Muhammad Habibi , Batara , Dewandra Bagus Eka Putra and Husnul Kausarian	DOI: 10.5220	0/000906560
Risk Identification in Management System Process Integration Whi Impact on the Goal of Management System Components	ch Have	P. 41 - 48
Nastasia Ester Siahaan, Leni Sagita and Yusuf Latief	DOI: 10.5220)/000909140
The Performance of 3D Multi-slice Branched Surface Reconstructio GPU Platform	n on CPU-	P. 49 - 54
Normi Abdul Hadi and Norma Alias	DOI: 10.5220)/000909270
Tile-based Game Plugin for Unity Engine		P. 55 - 63
Salhazan Nasution , Arbi Haza Nasution and Arif Lukman Hakim	DOI: 10.5220)/000910370
Image Segmentation of Nucleus Breast Cancer using Digital Image	Processing	P. 64 - 67
Ana Yulianti , Ause Labellapansa , Evizal Abdul Kadir , Mohana Sundaram and Mahmod Othman	DOI: 10.5220)/000910590
An Integrated Framework for Social Contribution of Diabetes Self-c Management Application	are	P. 68 - 73
Zul Indra , Liza Trisnawati and Luluk Elvitaria	DOI: 10.5220	0/000910610
Spatiotemporal Analysis of Urban Land Cover: Case Study - Pekanb Indonesia	aru City,	P. 74 - 79
ldham Nugraha , Faizan Dalilla , Mira Hafizhah Tanjung , Rizky Ardiansyah and M. Iqbal Hisyam	DOI: 10.5220)/000910630
The Effectiveness of Rice Husk Biochar Application to Metsulfuron Persistence	Methyl	P. 80 - 84
Subhan Arridho , Saripah Ulpah and Tengku Edy Sabli	DOI: 10.5220	0/000911960
Digital Forensics: Acquisition and Analysis on CCTV Digital Evidence Static Forensic Method based on ISO /IEC 27037:2014	eusing	P. 85 - 89
Rizdqi Akbar Ramadhan , Desti Mualfah and Dedy Hariyadi	DOI: 10.5220	0/000912040

Testing the Role of Fish Consumption Intention as Mediator		P. 90 - 97
Junaidi, Desi Ilona, Zaitul and Harfiandri Damanhuri	DOI:10.522	0/00091206
Segmentation of Palm Oil Leaf Disease using Zoning Feature Extrac	tion	P. 98 - 101
Ause Labellapansa , Ana Yulianti and Agus Yuliani	DOI: 10.522	0/00091221
Analysis of Economy in the Improvement of Oil Production using H Pumping Unit in X Field	ydraulic	P. 102 - 108
Muhammad Ariyon , Novia Rita and Tribowo Setiawan	DOI: 10.522	0/00091294
Construction Design and Performance of Dry Leaf Shredder with V Rotation for Compost Fertilizer	ertical	P. 109 - 113
Syawaldi	DOI: 10.522	0/00091296
The Impact of Additively Coal Fly Ash toward Compressive Strengt Shear Bond Strength in Drilling Cement G Class	h and	P. 114 - 119
Novrianti , Dori Winaldi and Muhammad Ridho Efras	DOI: 10.522	0/00091298
Impact of Vibration of Piling Hammer on Soil Deformation: Study (Highway Construction Section 5 Pekanbaru-Dumai	Case in	P. 120 - 124
Firman Syarif , Husnul Kausarian and Dewandra Bagus Eka Putra	DOI: 10.522	0/00091299
Combination Playfair Cipher Algorithm and LSB Steganography for Protection	Data Text	P. 125 - 129
Apri Siswanto , Sri Wahyuni and Yudhi Arta	DOI: 10.522	0/00091445
Fire Detection System in Peatland Area using LoRa WAN Communi	cation	P. 130 - 134
Evizal Abdul Kadir , Hitoshi Irie and Sri Listia Rosa	DOI: 10.522	0/00091452
Forest Fire Monitoring System using WSNs Technology		P. 135 - 139
Evizal Abdul Kadir , Sri Listia Rosa and Mahmod Othman	DOI: 10.522	0/00091452
Multi Parameter of WSNs Sensor Node for River Water Pollution N System (Siak River, Riau-Indonesia)	Ionitoring	P. 140 - 145
Evizal Abdul Kadir , Abdul Syukur , Bahruddin Saad and Sri Listia Rosa	DOI: 10.522	0/00091453
Analysis for Gerund Entity Anomalies in Data Modeling		P. 146 - 150
Des Suryani , Yudhi Arta and Erdisna	DOI:10.522	0/00091456

The Incidence of Rhinoceros Beetle Outbreak in Public Coconut Plantation in P. 151 -Tanjung Simpang Village, Indragiri Hilir, Riau Province154

Saripah Ulpah , Nana Sutrisna , Fahroji , Suhendri Saputra and Sri Swastika	DOI: 10.5220)/000914580
Mobile Application of Religious Activities for the Great Mosque Isla Center Rokan Hulu with Push Notification	amic	P. 155 - 162
Salhazan Nasution , Arbi Haza Nasution and Fitra Yamita	DOI: 10.5220	0/000914590
An Augmented Reality Machine Translation Agent		P. 163 - 168
Arbi Haza Nasution , Yoze Rizki , Salhazan Nasution and Rafi Muhammad	DOI: 10.5220	0/00091463
The Community Perception of Traditional Market Services in Pekan Riau Province	baru City,	P. 169 - 174
Puji Astuti , Syaifullah Rosadi , Febby Asteriani , Eka Surya Pratiwi and Thalia Amanda Putri	DOI: 10.5220	0/00091465
Separation of Crude Oil and Its Derivatives Spilled in Seawater by u Cobalt Ferrite Oxide	sing	P. 175 - 181
Mohammed A, Samba , Ibrahim Ali Amar , Musa Abuadabba , Mohammed A. Alfroji , Zainab M. Salih and Tomi Erfando	DOI: 10.5220)/00091469
Study of Open Space Utilization in Pekanbaru City, Riau Province		P. 182 - 187
Mira Hafizhah T. , Febby Asteriani , Mardianto and Angelina Rulan S.	DOI: 10.5220	0/00091491
Application of Augmented Reality as a Multimedia Learning Media Study of Videography	: Case	P. 188 - 193
Ahmad Zamsuri , Fadli Suandi and Rizki Novendra	DOI: 10.5220	0/00091492
Green Building Performance Analysis in the Stimi Campus Building		P. 194 - 199
Dian Febrianti and Samsunan	DOI: 10.5220	0/00091493
Towing Service Ordering System based on Android: Study Case - De of Transportation, Pekanbaru	partment	P. 200 - 204
Panji Rachmat Setiawan , Yudhi Arta and Rendi Sutisna	DOI: 10.5220	0/00091500
Biosurvey of Mercury (Hg), Cadmium (Cd), and Lead (Pb) Contamin Reclamation Island-Jakarta Bay	ation in	P. 205 - 210
Salmita Salman , Achmad Sjarmidi and Salman	DOI: 10.5220)/00091512
Expert System to Detect Early Depression in Adolescents using DAS	S 42	P. 211 - 218
Nesi Syafitri , Yudhi Arta , Apri Siswanto and Sonya Parlina Rizki	DOI: 10.5220)/00091582
Geotechnics Analysis: Soil Hardness on Stability of Davit Kecil's We Maras, Kepulauan Anambas, Kepulauan Biau	ir in Ulu	P. 219 - 228

Maras, Kepulauan Anambas, Kepulauan Riau

Joni Tripardi, Nopiyanto and Husnul Kausarian Support for Heritage Tourism Development: The Case of Ombilin Coal Mining P. 229 -236 Heritage of Sawahlunto, Indonesia Jonny Wongso, Desi Ilona, Zaitul and Bahrul Anif DOI:10.5220/000918540 Aerial Photogrammetry and Object-based Image Analysis for Bridge P. 237 -242 Mapping: A Case Study on Bintan Bridge, Riau Islands, Indonesia Husnul Kausarian, Muhammad Zainuddin Lubis, Primawati, Dewandra DOI:10.5220/000918580 Bagus Eka Putra, Adi Suryadi and Batara Monitoring Single Site Verification (SSV) System and Optimization BTS P. 243 -249 **Network based on Android** Abdul Syukur, Siti Rahmadhani Sabri and Yudhi Arta DOI:10.5220/000918610 **Characterization of the Ethnobotany of Riau Province Mascot Flora** P. 250 -253 (Oncosperma tigillarium (Jack) Ridl.) Desti, Fitmawati, Putri Ade Rahma Yulis and Mayta Novaliza Isda DOI:10.5220/000918620 Effect Stocking Density on Growth and Survival rate of Larval Selais Fish P. 254 -257 (Kryptopterus lais) Cultured in Recirculation System Agusnimar Muchtar and Rosyadi DOI:10.5220/000918630 **Development of Safety Plan to Improve OHS (Occupational Health and** P. 258 -267 Safety) Performance for Construction of Dam Supporting Infrastructure based on WBS (Work Breakdown Structure) Aprilia Dhiya Ulhaq, Yusuf Latief and Rossy Armyn Machfudiyanto DOI:10.5220/000918650 Design of Web Login Security System using ElGamal Cryptography P. 268 -273 Yudhi Arta , Hendra Pratama , Apri Siswanto , Abdul Syukur and Panji DOI:10.5220/000918680 Rachmat Setiawan P. 274 -Standard Operational Procedures Development for Government Building's Care and Maintenance Work of Outer Spatial and Housekeeping Component²⁸⁴ to Improve Work Effectiveness and Efficiency using Risk-based Approach Lasita Khaerani, Yusuf Latief and Rossy Armyn Machfudiyanto **DOI:**10.5220/000918720 A Novel Correlation on MMP Prediction in CO2-LPG Injection System: A Case P. 285 -290 **Study of Field X in Indonesia** Prasandi Abdul Aziz, Hendra Dwimax, Tutuka Ariadji, Steven Chandra, DOI:10.5220/000935980 Wijoyo Niti Daton and Ressi Bonti Productivity Analysis of Frac-pack Completion in M Well with Sand Problem P. 291 -298 **Indication and High Permeability Formation** Herianto, Prasandi Abdul Aziz, Wijoyo Niti Daton and Steven Chandra DOI:10.5220/000935990

DOI:10.5220/000915840

Miftahul Jannah, Dewandra Bagus Eka Putra, Firman Syarif,

Emulsion Treatment using Local Demulsifier from Palm Oil		P. 299 - 303
Tomi Erfando and Emre Fathan	DOI: 10.522	0/000936010
Designing an IoT Framework for High Valued Crops Farming		P. 304 -
Domingo Junior P. Ngipol and Thelma D. Palaoag	DOI: 10.522	310 0/000936450
Consideration of the Different Pile Length Due to Soil Stress and In of the Nailed-slab Pavement System under Concentric Load	ner Forces	P. 311 - 314
Anas Puri , Roza Mildawati and Muhammad Solihin	DOI: 10.522	0/000936490
Utilization of Agricultural Waste to Be Bioethanol Sources as a Solv Paraffin Wax Crude Oil Issues	ent on	P. 315 - 321
M. K. Afdhol , F. Hidayat , M. Abdurrahman , H. Z. Lubis , R. K. Wijaya and N. P. Sari	DOI: 10.522	0/000936690
The Effect of Regeneration Time of Biomass Activated Carbon using Temperature to Reduce Filtration Loss in Water-based Drilling Fluid	Low	P. 322 - 325
Nur Hadziqoh , Mursyidah , Arif Rahmadani , Idham Khalid and Hasnah Binti Mohd Zaid	DOI: 10.522	0/00093855
mproving the Accuracy of Features Weighted k-Nearest Neighbor ເ Distance Weight	using	P. 326 - 330
K. U. Syaliman , Ause Labellapansa and Ana Yulianti	DOI: 10.522	0/00093909
Predicting of Oil Water Contact Level using Material Balance Mode Multi-tank Reservoir	ling of a	P. 331 - 336
Muslim Abdurrahman , Bop Duana Afrireksa , Hyundon Shin and Adi Novriansyah	DOI: 10.522	0/00094046
Chip Formation and Shear Plane Angle Analysis on Carbon Steel Dr Solid Carbide Tools	illing using	g P. 337 - 341
Rieza Zulrian Aldio	DOI: 10.522	0/000940620
A Solution to Increase Natuna D Alpha's Resource Utilization by Cry Distillation: Conceptual Design & Sensitivity Study	ogenic/	P. 342 - 348
Wijoyo Niti Daton , Ezra Revolin , Siptian Nugrahawan , Prasandi Abdul Aziz , Tutuka Ariadji , Steven Chandra and J. A. Nainggolan	DOI: 10.522	0/000942720
Design of Volcanic Educational-based Natural Tourism at Giriloyo, V /illage, Imogiri District, Bantul Regency, Yogyakarta-Indonesia	Vukirsari	P. 349 - 356
Sri Mulyaningsih	DOI: 10.522	0/000943570
Four Types of Moral Holistic Values for Revolutionizing the Big Data	a Analytics	P. 357 -
n IoT-based Applications	-	362

© 2022 SciTePress, Science and Technology Publications, Lda - All rights reserved.

Geotechnics Analysis: Soil Hardness on Stability of Davit Kecil's Weir in Ulu Maras, Kepulauan Anambas, Kepulauan Riau

Miftahul Jannah¹, Dewandra Bagus Eka Putra¹, Firman Syarif², Joni Tripardi³, Nopiyanto³ and Husnul Kausarian¹

¹Department of Geological Engineering, Universitas Islam Riau, Pekanbaru, Indonesia ²Department of Civil Engineering, Universitas Islam Riau, Pekanbaru, Indonesia ³Water Resources, Department of Public Works and Housing, Kepulauan Anambas, Indonesia

Keywords: Geotechnics, Weir Stabillity, Sieve Analysis, Direct Shear Stress, Kepulauan Riau.

Abstract: Davit Kecil's weir is an irrigation area that located in Ulu Maras Village, East Jemaja District, Kepulauan Anambas Regency, Kepulauan Riau Province. The needs of a geotechnical study are important to determine the soil properties and soil stability of the study area, those parameters will be used to identify the stability of the weir structure. Methods used are field study by taking soil samples and conduct laboratory analysis such as sieve analysis, hydrometer analysis, atterberg limits and direct shear stress that useful for soil resistance identification. Based on the laboratory test result, Hb.2 and Hb.3 are non- plastic soils with uniformity coefficient are 20.92 - 45.38 and coefficient of gradation is 6 - 15.68. So, the soils as categorized as very good on uniformity and good on gradation. The value of direct shear stress with cohesion (c) is 0.06 and ϕ obtained were in the range of 33.78 - 34.33. Soil grain size identified from sieve analysis is gravel-clay. Based on the analysis result, the stability of Davit Kecil's weir that was observed from normal water condition and flood water condition is categorized into strong-safe weir characterized by sufficient eccentricity and bearing capacity control. In addition, the weir is withstand rolling and sliding failures.

SCIENCE AND TECHNOLOGY PUBLICATIONS

1 INTRODUCTION

Weir is an across building on river channel that functions to raise the river's water level. Weir is a solution in various problems that related to water resources, utilization, management and preservation (Sadono et al., 2017). It was commonly built from soil and rock materials (Athani et al., 2015), that collected a water reserve as a reservoir in order to maintain stable water supply both in rainy and dry seasons (Sompie et al., 2015). Weir is a building that perpetually related with the water (Harseno and Daryanto, 2008). It could also be defined as a building that planted in the river or water flow to deflect water into irrigation (Gunasti, 2016; Putra et al., 2016).

Jemaja's irrigation area is located in Jemaja Island, Kepulauan Anambas Regency, Kepulauan Riau Province. Based on the regulation from Ministry of Public Works and Housing (PUPR) No.14/PRT/M/2015 about The Criteria and Stipulation of Irrigation Area Status, Kepulauan Anambas Regency has the authorization of irrigation area as wide as ± 386 ha. A study by BWS Sumatra IV said this time around 637,48 ha Irrigation Area was indicated as irrigation area and $\pm 793,43$ ha that has the potency to be convert into irrigation area.

As a follow-up, the management of irrigation that could be utilized effectively and optimally then developed an irrigation area that potentially as an irrigation area. Other than that, the aims to plan the development irrigation area should estimating the technique, economical and environmental aspects.

The weir conditions need to fulfill several factors to be stable and able to control a flood condition. The weir construction should be calculated the strength of bearing capacity of subsurface soil, the weir must be able to hold-out a seepage caused by river water flow and water infiltration into the soil, the weir height must be able to fulfill the minimum water level which is needed for the whole irrigation area and the form of a boiler must be calculated so the water can transport a sand, gravel and any stones from upstream and not cause damage to the weir's body (Erman and M., 2010).

Jannah, M., Putra, D., Syarif, F., Tripardi, J., Nopiyanto, . and Kausarian, H.

Geotechnics Analysis: Soil Hardness on Stability of Davit Kecil's Weir in Ulu Maras, Kepulauan Anambas, Kepulauan Riau. DOI: 10.5220/0009158402190228

In Proceedings of the Second International Conference on Science, Engineering and Technology (ICoSET 2019), pages 219-228 ISBN: 978-989-758-463-3

Copyright © 2020 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved

Figure 1: The administration map of Kepulauan Anambas regency.

2 METHODOLOGY

Methods used in this study are field survey, laboratory analysis and the calculation of dam stability. The explanation of each analysis is as follows:

2.1 Field Survey

The field survey was done to obtain primary data such as planning location, identified soil layers by using borehole data in several points. In addition, drilling is done to take soil sample which would be analyzed in the laboratory (Susanto H, 2014). Field survey also conducted by using hand bore that useful to find out the soil layers on the subsurface. The standard procedure that used in hand bore work is ASTM D – 1452 - 80. There are 2 boreholes that can be seen in table (1) and figure (1) below.

Based on the Regional Geology Map (Samodra, 1995), in this two points, the study area was include in Granit Anambas Formation. There are granite, granodiorite and syenite in this formation. The general soil condition is grey, brown and pink in colour.

Table 1: Borehole location and soi	l testing.
------------------------------------	------------

No	Location	Coordinates	
110	name	Х	Y
1	HB.2	N2°55'19.64"	E1052°44'17.83"
2	HB.3	N2°55'18.50"	E1052°44'18.64"

Figure 2: The topography map in the study area shows hand bore points and weir location

2.2 Laboratory Test

Laboratory test consists of undisturbed and disturbed samples taken from selected locations (Sompie et al., 2015). Laboratory test used to determine the most effective and suitable location of dam construction in the study area. Several laboratory tests had been conducted such as sieve analysis, hydrometer analysis, atterberg limits and direct shear stress.

2.2.1 Sieve and Hydrometer Analysis

Sieve and hydrometer analysis are the methods to determine the soil grain size at the borehole points. Soil classification calculated based on particle size from sieve and hydrometer analysis (ASTM, 2007).

There are uniformity coefficient (Cu) and coefficient of gradation (Cc) that obtained from sieve and hydrometer curve. The calculation (1) and (2) are:

$$C_u = \frac{D_{60}}{D_{10}} \tag{1}$$

$$C_c = \frac{D_{30^2}}{D_{10} \times D_{60}} \tag{2}$$

where:

 C_c = coefficient of gradation

Figure 3: The USCS triangle

 C_u = uniformity coefficient D_{10} = diameter of 10% finer D_{30} = diameter of 30% finer

 D_{60} = diameter of 60% finer

2.2.2 Atterberg Limit

Atterberg Limit used to identify the soil properties such as Liquid Limit (LL), Plastic Limit (PL) and Plasticity Index (PI). The type of soil can be determined based on the Plasticity Index's (PI) value and then the value is inserted into the plasticity chart. When the atterberg limit's status is non-plastic, the triangle (figure 3) can be used.

Other than that, here is the formula of Atterberg Limits to calculated Plastic limit from ASTM D 424-54 (3), Liquid limit from ASTM D 422 – 66 (4) and Plasticity index from ASTM D 424 – 74 (5).

$$w = \left(\frac{m_2 - m_3}{m_3 - m_1}\right) \times 100\% \tag{3}$$

$$LL = w \times \left(\frac{N^{0.121}}{25}\right) \tag{4}$$

$$PI = LL - PL \tag{5}$$

wherein:

w = water content (%)

N = number of beats

 $m_1 = \text{container mass (gr)}$

 $m_2 = \text{container mass} + \text{wet soil (gr)}$

$$m_3 = \text{container mass} + \text{dry soil (gr)}$$

$$PI = Plastic Index (\%)$$

$$LL = Liquid limit (\%)$$

PL = Plastic limit (%)

2.2.3 Direct Shear Stress

This test is used to determine the soil shear stress after its experienced a consolidation by loaded with twoway drainage. On the soil mechanics calculation, the direct shear stress is stated as cohesion (c) and deep friction angle (\circ) (Adama, 2017). The deep friction angle used to determine the main material in the weir.

2.3 Weir Stability

Weir stability analysis is useful to indicating the forces that worked on the weir. The calculation used are own gravity (G), Earthquake force (K), hydrostatic force (W), Mud pressure (L) and uplift pressure (Px). To calculated own gravity and hydrostatic force the weir was partially divide into several shape such as triangles, rectangulars or trapezoid (Ali, 2014). The earthquake coefficient depends on the construction site. In this study area, K is 0,15. According to Radjulaini (2012), on the construction by using stone should not occur tensile stress. Moment of resistance (Mt) must greater than the moment of rolling (Mg) with the safety factor between 1.5-2. The construction should not shift with the safety factor is 1.2-2.

$$E = Wbs.\alpha \tag{6}$$

$$L_p = \frac{\gamma_s \cdot h^2}{2} \cdot \left(\frac{1 - \sin \phi}{1 + \sin \phi}\right) \tag{7}$$

$$P_x = H_x - \frac{L_x}{L} \Delta H \tag{8}$$

wherein:

E = earthquake forces (ton)

Wbs = own gravity in the vertical direction (ton)

 α = earthquake coefficient

 L_p = force located at 2/3 of the depth of the top of the mud that works horizontally (m)

 γ_s = mud specific gravity (γ_s = 1.6 kN/m 3)

H = thick mud (m)

 φ = friction angle in mud (φ =20 o)

Px = uplift force on x point (kg/m 2)

Hx = height x (m)

 Δ = high difference (m)

L = total length of creep line on the weir (m)

Lx = length of creep line until x point (m)

Dam stability in terms of rolling, sliding, eccentricity and soil bearing capacity were calculated. The dam stability analysis is observed from 2 (two) water level conditions, that is normal water condition and flood water condition. The following are formulas used in this calculation.

$$F_x = \frac{\sum MT}{\sum MG} > 1.25 \tag{9}$$

$$F_x = \frac{\sum V.tan \,\varphi}{\sum H} > 1.00 \tag{10}$$

$$a = \frac{\sum MT - \sum MG}{\sum H}$$

$$e = \frac{B}{2} - a < \frac{B}{6}$$
(11)

$$\sigma = \frac{\sum V}{B} \times \left(1 \pm \frac{6e}{B}\right) < \sigma i jin \tag{12}$$

where:

Fx = safety value

 $\sum V = total of vertical force$

 Σ H = total of horizontal force

 \sum MT = total of the moment of resistance

 \sum MG = total of the moment of rolling

e = eccentricity

 σ = soil stress (σ ijin = 3.75 kg/m²)

3 RESULT AND DISCUSSION

The result and discussion of each analysis that has been done in this study are:

3.1 Field Survey

The following are soil layers in the drill point at a depth of 4 meters.

In this location (figure 4), the description of layers soil are:

- At depth 30 100 cm there is silty sand, the colour is brownish yellow, solid and low plasticity.
- At depth 100 400 cm there is silty clay with sand insert, the colour is yellow, rather soft medium, medium high plasticity.

In this location, the description of layer soil (figure 5) is:

- At depth 0 50 cm there is sandy-silt with fine sand grains, the colour is brownish yellow, rather loose and hard.
- At depth 50 400 cm there is sand with medium sand grains, the colour is yellow, rather loose solid.

Figure 4: The sediment log at HB.2

3.2 Laboratory Test

The result of laboratory analysis in the study area are sieve and hydrometer analysis, atterbeg limit and direct shear stress.

3.2.1 Sieve and Hydrometer Analysis

There are the result of sieve and hydrometer analysis from the soil samples taken at 3.5 - 4.00 m in each

Table 2: Result of Sieve and hydrometer analysis of HB.2

	Sieve	H	B.2
	number	Diameter	Percentage
		(mm)	(%)
S	0	0.00	100.0
Ι	4	4.75	96.80
E	10	2.00	95.60
V	20	0.85	95.10
E	30	0.6	94.20
	40	0.425	89.00
	60	0.25	64.70
	100	0.15	29.50
	200	0.075	29.00
	Н	0.073	27.07
	Y	0.052	26.14
	D	0.038	25.22
	R	0.028	23.37
	0	0.019	18.75
	М	0.011	15.06
	E	0.008	13.21
	Т	0.006	9.52
	E	0.003	8.59
	R	0.001	4.9

Table 3: Result of Sieve and hydrometer analysis of HB.3

Sieve HB.3 number Diameter Percentage (mm)(%) S 0 100.0 0.00 97.80 Ι 4 4.75 Е 97.20 10 2.00V 20 0.85 96.70 Е 30 0.6 95.50 40 0.425 94.60 0.25 89.70 60 65.50 100 0.15 200 0.075 28.90 Η 0.073 27.02 Y 0.052 26.09 D 0.038 25.17 R 0.028 21.48 0 0.019 17.80 Μ 0.011 15.03 Е 0.008 12.26

Т

Е

R

borehole. Based on the table below, the value will be plotted into the grain-size curve (figure 6).

From the curve, it could be seen that the result of grain size curve has gap graded because it has a combination of more than 2 fractions with the similar gradation. The type of grain size on sieve analysis fromvthe curve above are gravel – fine sand.

Whereas, hydrometer analysis indicated the grain size type as silt – clay. Based on the classification of grain size, the type of soil is sandy loam (SM) with texture non-sticky and non-plastic (figure 7).

The uniformity coefficient (Cu) calculation and coefficient of gradation were carried out using the diameter value that obtained from the curve are $D_{10} = 0.006$, $D_{30} = 0.15852$ and $D_{60} = 0.2723$.

So, the value of Cu and Cc based on the diameter by curve are 45.38 and 15.68. Accordingly, the soil sample has a very good grain uniformity and good gradation.

For HB.3, the result of sieve and hydrometer analysis are (table 3):

From the curve above, indicated the gap graded

soil and has a combination of more than 2 fractions with the same gradation. The type of grain size from sieve analysis are gravel – fine sand. Whereas, from

0.006

0.003

0.001

8.58

5.81

3.96

Figure 6: The grain size curve of HB.2

Figure 7: Type soil in HB.2

hydrometer analysis shows silt – clay grain size. Soil type determine from the grain class (figure 9).

The uniformity coefficient (Cu) and coefficient of gradation were calculated with diameter value that determine from the curve are $D_10 = 0.00698$, $D_30 = 0.075892$ and $D_60 = 0.146$.

So, the value of Cu and Cc are 20.92 and 6. Accordingly, the soil sampleo has very god uniformity of grain and good gradation.

3.2.2 Atterberg Limits

The atterberg limit analysis that performed were liquid limits, plastic limits and index plastic. The test carried out using the sample from 3,50 m - 4,00 m depth in each borehole. The following are the results of liquid limit, plastic limit and plasticity index.

Table 4: Atterberg Limit analysis result

Drill no	Depth	Atterberg limits		
Dim no.	(m)	Wl(%)	Wp(%)	Ip(%)
HB.2	3.50-4.00	*NP	*NP	*NP
HB.3	3.50-4.00	*NP	*NP	*NP

*NP = non-plastic

This sample has non-plastic properties because at that depth, the soil layers are clay-silt with sand insertion (HB.2) and medium sand (HB.3).

3.2.3 Direct Shear Stress

This test was done with three-loads, those are 13.4 kg, 28,4 kg and 54.80 kg. After that the value of normal stress and shear stress would be plotted into shear stress graph (figure 10 and figure 11).

The result of direct shear stress from the graph above could be seen in the table below (Table 5).

Table 5: The direct shear stress's value

Bore	Cohesion	Friction Angle
Number	(kg/cm2)	(degree)
(2)	0.06	34.33
(3)	0.06	33.78

From the table above, could be determined the material that used is stone. Whereas the volume weight is 22 kN/m^3 .

Figure 9: The grain size curve of HB.3

Figure 10: The shear stress graph of HB.2

3.3 Weir Stability

Weir stability is determined based on the calculation of workforces. The result of forces that worked at Davit Kecil's Dam during normal water condition and

Figure 11: The shear stress graph of HB.3

flood water condition.

Table 6: a. The forces that worked at Davit Kecil's Weir in normal water condition

No	Kind of forces	Vertical styles		Horizontal styles	
		V	Direction	Н	Direction
1.	Own gravity	-43.07	•		
2.	Earthquake force			7.69	->
3.	Hydrostatic pressure	0.26	♦	7.28	
4.	Mud pressure	0.2	¥	5.71	
5.	Uplift- pressure	8.00	♦	-10.99	←
Total		-34.6		9.79	

The forces that work on normal and a flood condition could be seen by moment direction. On the table above could be seen that MT is -180.21 (normal

No	Kind of forces	Moment			
		MT	Direction	MG	Direction
	_		5		
1.	Own gravity	-180.20			
2.	Earthquake force			17.35	\mathbf{P}
3.	Hydrostatic pressure	-1.48	ン	24.25	>
4.	Mud pressure	-1.15	>	19.87	\mathbf{D}
5.	Uplift- pressure	11.33	\mathbf{r}	-32.75	V
Total		-171.50		28.72	

Table 7: b. The forces that worked at Davit Kecil's Weir in normal water condition

Table 8: a. The forces that worked at Davit Kecil's Weir in normal water condition

No	Kind of forces	Vertical styles		Horizontal styles	
INU		V	Direction	Н	Direction
1.	Own gravity	-43.07			-
2	Earthquake			7.69	
2.	force				
3.	Hydrostatic pressure	3.17	₩	15.28	\rightarrow
4.	Mud pressure	0.2	▼	5.71	
5.	Uplift- pressure	-11.06	1	-15.27	-
Total		-34.6	-50.75		13.42

Table 9: b. The forces that worked at Davit Kecil's Weir in flood water condition

No	Kind of forces	Moment			
		MT	Direction	MG	Direction
1.	Own gravity	-180.20			
2.	Earthquake force			17.35	Þ
3.	Hydrostatic pressure	-14.95	ン	57.77	\mathbf{r}
4.	Mud pressure	-1.15	>	19.87	\mathbf{r}
5.	Uplift- pressure	15.39	Þ	-53.32	V
Total		-180.92		41.67	

condition) and -180.208 (flood condition). So, the vertical direction from this force is rotated to the right or counter-clockwise (Figure 12).

On the earthquake force, the MG value is 17.35 so as to turn the left or clockwise (Figure 13).

These hydrostatic forces have a two-moment, those are MT and MG that have a different direction. On the normal condition, the MT (righting moment) value is -1.481 and on the flood condition, the MT

Figure 12: Own gravity on the weir

Figure 13: Earthquake force on the weir

(righting moment) value is -14.950. The vertical direction of this force is changed by turn the right or counter-clockwise (Figure 14).

While MG on the normal condition is 24.25 and on the flood condition is 57.77. So the horizontal direction from this force is turned the left or clockwise (Figure 15).

From the table above (6b) (7b), noted that MT value in both conditions is the same, that is -1.15 on the normal and flood condition. So, the vertical direction of this force is changed by turn the right or counter-clockwise (Figure 16).

On the MG, the value of mud pressure is 19.87 on both conditions. So the horizontal direction this force is to turn the left or clockwise (figure 17).

On the uplift-pressure, the MT's value is 11.33 in normal condition and flood condition is 15.39. So

Figure 15: A hydrostatic force of MG

the horizontal direction of MT is turned the right or counter-clockwise (figure 18).

On the uplift-pressure, the MG's value is -32.75 in normal condition and flood condition is -53.32. So the horizontal direction of MG is turned the left or clockwise (figure 19).

The calculation of weir stability are reviewed from rolling, sliding, eccentricity and soil bearing capacity for each water level conditions, there are normal water condition and flood water condition. The calculation can be seen in the table below.

Based on the calculation above, the control of stability weir by rolling in normal and flood water conditions as strong, that is $\geq 1,5$. Davit Kecil's weir is strong to against shear because in the normal water condition the value is \geq 1,5 and flood water condition is >1,00. This weir is also safe to eccentricity control

Table 10: The calculation of stability at Davit Kecil's Weir in normal water condition and flood water condition

No	Weir stability		Water level conditions		
110.			Normal	Flood	
1.	Rolling stability		5.971	-4.341	
2.	Sliding stability		-2.676	3.706	
3	Eccentricity	a	4.127 m	-2.744 m	
5.	stability	e	-0.127 m	1.256 m	
	Sailhaamina		0.391	1.232	
4.	capacity	C	kg/cm^3	kg/cm^3	
	cupacity		0.474	0.037	
			kg/cm3	kg/cm^3	

with value -0,127 ≥ 1,333 in normal water condition and in flood water condition is $1,256 \ge 1,333$. The soil bearing capacity at this weir was done twice in water level conditions with the terms of value $\leq \sigma_{ijin}$ is 3,75

 kg/cm^3 . The normal water condition with value σ_1 is 0,391 kg/cm^3 and σ_2 is 0.474 kg/cm^3 , while in flood water condition with value σ_1 is 1.232 kg/cm^3 and σ_2 is 0,037 kg/cm^3 . So it is concluded that Davit Kecil's weir in 2 water level conditions has fulfilled that are strongly resist of rolling, strongly resist of sliding, safe of eccentricity and strongly resist of soil bearing capacity.

4 CONCLUSION

Based on the result and discussion in the study area above, then conclusions could be drawn as follows:

• Safety factor to rolling mode is greater than the

minimum safety factor requirement.

- Safety factor to sliding mode is greater than the minimum safety factor.
- Safety factor to eccentricity mode is safe.
- Safety factor to bearing soil capacity is in the range of requirement value for wire building.

ACKNOWLEDGMENTS

Thanks to the Department of Public Works and Housing (Dinas PUPR) Kepulauan Anambas that giving permission and access to the study area.

REFERENCES

- Adama, R. A. (2017). Correlation of Soil Bearing Capacity with Shear Strength Using Vane Shear and Direct Shear Stress Tools. Universitas Lampung (Thesis).
- Ali, I. M. (2014). *Tinjauan Kestabilan Bendung Alopohu di Kabupaten Gorontalo*. Universitas Negeri Gorontalo (Thesis).
- ASTM (2007). Astm d422-63: Standard test method for particle-size analysis of soils.
- Athani, S. S., Solanki, C., Dodagoudar, G., et al. (2015). Seepage and stability analyses of earth dam using finite element method. *Aquatic Procedia*, 4:876–883.
- Erman, M. M. and M. (2010). *Desain Bendung Tetap untuk Irigasi*. Bandung: Alfabeta.
- Gunasti, Z. K. N. S. A. (2016). Kajian teknis dam sembah patrang kabupaten jember. *Jurnal Rekayasa Infrastruktur Hexagon*, 1(1).
- Harseno, E. and Daryanto, E. (2008). Tinjauan tinggi tekanan air di bawah bendung dengan turap dan tanpa turap pada tanah berbutir halus. *Majalah Ilmiah UKRIM Edisi*, 2.
- Putra, D. B. E., Choanji, T., et al. (2016). Preliminary analysis of slope stability in kuok and surrounding areas. *Journal of Geoscience, Engineering, Environment, and Technology*, 1(1):41–44.
- Sadono, K. W., Goji, P., Rachdian, E. S., and Tommy, S. (2017). Analisis geologi teknik pada kegagalan bendung cipamingkis, bogor. *Provinsi Jawa Barat. Proceeding Seminar Nasional Kebumian ke*, 10.
- Samodra, H. (1995). Geological Map of The Tarempa and Jemaja Sheet. Riau.
- Sompie, O. B. A., S., D., and Ilyas, T. (2015). (2015). Pengaruh Proses Konsolidasi Terhadap Deformasi dan Faktor Keamanan Lereng Embankment (Studi Kasus Bendungan Kosinggolan),. Prosiding seminar Teknik Sipil, 1.

CERTIFICATE

as Presenter

This Is To Certify That

Miftahul Jannah (Dewandra Bagus Eka Putra, Firman Syarif, Joni Tripardi, Nopiyanto, Husnul Kausarian)

Has Presented At

ICOSET 2019

(THE 2ND INTERNATIONAL CONFERENCE ON SCIENCE, ENGINEERING, AND TECHNOLOGY)

"SUSTAINABLE DEVELOPMENT IN DEVELOPING COUNTRY FOR FACING INDUSTRIAL REVOLUTION 4.0"

on

September 5-7, 2019

at

SKA Convention and Exhibition Center Pekanbaru - Indonesia

Organized by Universitas Islam Riau

General Chair

Dr. Arbi Haza Nasution, M.IT

CO-ORGANIZERS:

UTTM Infrastructure University

Prof. Dr. H. Syafrinaldi, SH., MCL

Rector Of UIR