
Vulnerability Analysis and Effectiveness of OWASP

ZAP and Arachni on Web Security Systems

Yudhi Arta, Anggi Hanafiah, Nesi Syafitri, Panji Rachmat Setiawan, Yudhistira

Hadi Gustianda

Department of Informatic Engineering, Engineering Faculty, Universitas Islam Riau

{yudhiarta, anggihanafiah, nesisyafitri, panji.r.setiawan, yudhistirahadi}eng.uir.ac.id

Abstract. The importance of using a security scanner to find web application

weaknesses before they are released is very beneficial for the continuity of an

organization. In this study, we analyze web security using Awasp and Arachni

by testing it on web applications that reside in organizations. This research was

conducted based on several studies regarding web security, but we see that

some of these studies have not been able to measure the effectiveness of

scanners in a measurable way. the results of OWASP ZAP got a score of 75.61

and Arachni with a score of 62.20%. By using these benchmarks, the results of

scanner analysis become more measurable and can be assessed statistically so

that the organization can take steps to overcome these security holes.

Keywords: Owasp ZAP, Arachni, Security, Benchmark, Scanner

1 Introduction

Evaluation of Information Technology infrastructure security by exploiting

weaknesses in a system is called Penetration Testing. Penetration Testing was first

implemented in the 1970s by the United States Department of Defense with the aim

of uncovering security issues in computer systems to protect systems from digital

crimes so that system security issues can be corrected before crimes occur. With the

increasing popularity of computers and the ability to exchange information on the

internet, the challenge of protecting information on the internet is also increasing[1],

[2]. Because of this, in early 1965 experts in the field of computer security issued a

warning about the possibility of attempted breaches of information security on the
internet. About 15000 government, business analysts and experts in the field of

computer security discussed this issue and came to the conclusion of implementing

penetration testing. A collection of experts from NASA, CIA, cyber security experts

and academics was formed. The team demonstrates the utility of penetration testing as

a tool for evaluating computer system security. Currently, hacker techniques are

increasingly sophisticated, especially with the increasing complexity of the

technology used to develop web applications, penetration testing is becoming even

more important as a method for evaluating computer security using a vulnerability

scanner[3]–[5].

However, with the availability of many scanners circulating on the internet, it

becomes very difficult to evaluate which scanner is the most effective and efficient in

evaluating a web application. What's more, each scanner has its own advantages and

disadvantages so that sometimes it is not enough with just one scanner to evaluate a

web application[6]. Therefore we conducted this research to analyze the two most

popular scanners namely OWASP ZAP and Arachni, which of these two scanners is

more accurate in the evaluation process, and analyze the advantages and

disadvantages of each scanner. We hope that with this research, web developers or

penetration testers can easily choose which scanner to choose and under what

conditions these two scanners are most effective and efficient to use[7], [8].

2 Research Methodology

The right method is needed to carry out the analysis and evaluation of the scanners

studied in this study. The following are the stages of the method used:

Fig. 1. Methodology

The importance of using a vulnerability scanner to find weaknesses in web

applications before they are released has been realized by many organizations. This

has been demonstrated in a study entitled A Case Study on Web Application

Vulnerability Scanning Tools[9]. With the increasing number of cybercrimes, this

research has tested several scanners that can be used to detect weaknesses in web

applications that can easily be missed if you only use manual testing. This study

explains that while using a scanner for testing is essential, these scanners vary in

performance and provide different results depending on the configuration settings and

how often the scanner is updated. This study also adds that the efficiency of a scanner

can be judged by how many vulnerabilities it can detect and this also depends on how

many plugins are available for the scanner. In choosing a scanner, this study also

suggests using paid scanners because they are updated more often than open source

scanners. However, a study entitled Price and Feature Comparison of Web

Application Scanners said that several open source scanners such as Arachni have

started to compete with paid scanners in terms of effectiveness[10], [11]. In addition,

this study also suggests that to get better scanning results, scan using different

scanners, use different settings and scan at other times to take advantage of the

updates to these scanners. However, researchers realize that more research is needed

to evaluate the effectiveness of existing scanners. Lately there have been many

researchers who are interested in conducting research related to scanner evaluation.

For example, in a study entitled Using Web Security Scanners to Detect

Vulnerabilities in Web Services they evaluated the vulnerability detection capabilities

of four commercial scanners (Webinspect, Appscan, WSDigger, and Wsfuzzer)[12],

[13]. They conducted an experiment using 300 popular web applications, and found

that the four scanners used generated false positives between 35% and 40% during the

scanning process.

Then in another study entitled Studying Open Source Vulnerability Scanners For

Vulnerabilities in Web Applications they evaluated the vulnerability detection

capabilities of three open source scanners (w3af, Skipfish, and OWASP ZAP) on the

Damn Vulnerable Web Application (DVWA)). In this study, they concluded that

OWASP ZAP has better performance than other scanners[14], [15]. Recognizing the

difficulties faced by companies in selecting scanners, a study entitled Web

Application Security Tools Analysis has looked for ways that can be used to deal with

this problem. This research is continued by identifying the factors that cause

vulnerabilities in web applications and the reasons why it is so difficult to eradicate

existing vulnerabilities in web applications[16], [17]. For each existing vulnerability,

this study suggests which scanners are suitable for each vulnerability. For

vulnerabilities like XSS and SQL Injection, the research above suggests:

1. Netcraft as a scanner that can be used to detect the above vulnerabilities

because this scanner is able to collect important footprint information related

to the destination domain.

2. XSSer is a framework that can be used to detect vulnerabilities related to

CSS.

3. OWASP Xenotix XSS supports manual and automatic detection of XSS

vulnerabilities.
4. And several scanners for SQL Injection: SQL Inject Me, SQLninja, and

Havij.

Although this research has tried several ways to deal with the above problems by

suggesting using more than one scanner for several vulnerabilities, this research has

concluded that determining the effectiveness of a scanner is still a challenge for

companies or web developers. So from some of the problems above, research is

needed to find the method needed to determine the effectiveness of a web

vulnerability scanner. And that's why we decided to conduct this research to analyze

between the two popular scanners used to evaluate web applications, namely OWASP

ZAP and Arachni, which scanner is more effective for certain vulnerabilities.

SAST is a code-based web application test that can be done manually or by using a

tool for code analysis to find vulnerabilities in the application's source code, or it can

also be called White Box Testing. However, it is difficult to do to find all the

vulnerabilities that exist by analyzing the source code, especially if the application is

very complex[18]. In addition, knowing the internal structure, design and

implementation of the application can be a barrier for testers to find vulnerabilities.

Fig. 2. Static Application Security Testing (SAST)

DAST is a process for finding vulnerabilities in web applications without knowing the

internal structure, design and implementation of the application. This method can also

be called Black Box Testing or Penetration Testing. Fuzzing, scraping, and crawling

are some of the techniques used in this method to find vulnerabilities in web

applications. (OWASP ZAP and Arachni use DAST as their method[18], [19].

Fig. 3. Dynamic Application Security Testing (DAST)

IAST is a combination of SAST and DAST. Designed to combine the two methods,

IAST takes advantage of the advantages of each method and therefore helps in

minimizing the weaknesses of each method. This method can also minimize errors in

detecting vulnerabilities in web applications when evaluating using the two methods

above (SAST and DAST) by confirming with each method. IAST does this by placing

agents into web applications which will be evaluated for monitoring and analysis in

real time[19], [20].

Fig. 4. Interactive Application Security Testing (IAST)

3 Result and Discussion

To evaluate scanners, applications that have vulnerabilities (benchmarks) needed to

perform testing of scanners are needed. The right method for choosing a benchmark is

to look at previous studies related to this research with the aim of understanding the

procedure for benchmarking and also to find out what benchmarks are available.

What's more, by looking at previous studies related to this research, we can choose

the right scanner to study and the right benchmark as a benchmark for testing. There

are several benchmarks available, including the OWASP Benchmark and the Web

Application Vulnerability Scanner Evaluation Project (WAVSEP). In this study, we

used the OWASP Benchmark as a benchmark. Scanner Selection Although many

previous studies have examined paid and open source scanners, in this study we

focused on two open source based scanners namely OWASP ZAP and Arachni. All

required applications will be installed on one computer and the testing process against

OWASP ZAP and Arachni will be carried out on one computer and OWASP

Benchmark will be installed as localhost as a benchmark. Benchmarking Results The

results of the benchmarking are obtained by executing the selected scanner against the

OWASP Benchmark. The results of the scanning will then be used to produce a file

with an XML extension which will then be inputted into OWASP Benchmark to

produce the results of the scanning process which will then draw conclusions from the

performance of the selected scanner.

3.1 Analysis of Results

The results of benchmarking from each scanner will be analyzed and the comparison

will be seen from each scanner. Then it will be compared in which vulnerabilities

each scanner excels in carrying out the scanning process and which scanner finds

more vulnerabilities for each vulnerability scanned. The analysis process will be

calculated using True Positive, False Positive, True Negative, False Negative

calculations. Here's the definition of each metric:

• True Positive (TP): True Positive is the number of cases that are positive and

detected as positive.

• False Positive (FP): False Positive is the number of cases which were

negative but detected as positive.

• True Negative (TN): True Negative is the number of cases that are negative

and detected as negative.

• False Negative (FN): False Negative is the number of positive cases but

detected as negative.

• True Positive Rate (TPR): is the value at which the scanner correctly

identifies and detects the correct vulnerability (positive cases). This value is

obtained by dividing the number of True Positives by the number of positive

cases.

• False Positive Rate (FPR): is the value at which the scanner reports non-

existent cases as positive. This value is obtained by dividing the number of

Fasle Positives by the number of negative cases.

• True Negative Rate (TNR): is the value at which the scanner correctly

ignores negative cases. This value is obtained by dividing the number of

True Negatives by the number of negative cases.

• False Negative Rate (FNR): is the value at which the scanner fails to

correctly identify and detect vulnerabilities (positive cases). This value is

obtained by dividing the number of False Negatives by the number of

positive cases.

• Accuracy: is a value to measure the percentage accuracy of the scanning

results from a scanner. This value is obtained by dividing the number of True

Positives and True Negatives by the number of positive and negative cases.

Based on the methodology that we have previously described, in this study we have

prepared a case example from one of the methodological processes described above,

namely the results of the benchmarking process. In this case, we use scanners that

comply with the specifications above (OWASP ZAP and Arachni) and use

benchmarks that comply with the specifications above (OWASP Benchmark). For this

example, we will only scan for cross-site scripting (XSS) vulnerabilities. The

following is the result of the benchmarking process that we have done:

Fig. 5. Benchmark Results

From the results above, the scanners we use are Arachni v1.5.1 and OWASP ZAP

V2.11.0. It can be seen that OWASP ZAP has a score that is superior to Arachni,

namely OWASP ZAP with a score of 75.61% and Arachni with a score of 62.20%,

which means OWASP ZAP managed to find more vulnerabilities (True Positive) than

Arachni, namely OWASP ZAP with 186 True Positives and Arachni with 153 True

Positives. Both scanners have a True Negative of 209 and a False Positive of 0, in

other words the two scanners manage to ignore all the fake vulnerabilities or traps that

have been prepared by OWASP Benchmark, so that both scanners are perfect in the

True Negative and False Positive categories.

In this discussion, we will compare the results of the Arachni and OWASP ZAP

scans. In the comparison between Arachni and OWASP ZAP, several metrics for each

scanner have been used as benchmarks and scores have been calculated, namely True

Positive, False Negative, True Negative, False Positive, True Positive Rate, and False

Negative Rate. Comparison of the results for each scanner can be seen in the table

below.

Table 1. Comparison of Results of Arachni and OWASP ZAP
Scanner TP FN TN FP TPR FPR

Arachni 157 89 209 0 63.82% 0.00%

OWASP

ZAP

186 60 209 0 75.61% 0.00%

In each of the categories in the table above, OWASP Benchmark applies the metrics

that we have discussed above to obtain the most appropriate measurement values to

assess each scanner and obtain appropriate analysis results and conclusions. That's

why OWASP Benchmark also produces an assessment in the form of a scorecard that

shows the results of the performance of each scanner in each category. The final value

of the OWASP Benchmark assessment (Score) is the percentage distance between the

True Positive Rate and the False Positive Rate (Score = TPR - FPR). The performance

results of each scanner in the cross-site scripting (XSS) vulnerability category can be

seen in the diagram below.

Fig 5. Arachni and OWASP ZAP Performance Charts

4 Conclusion

Based on the analysis in this study, it can be concluded that OWASP ZAP and

Arachni have different scanning procedures and processes for each scanner. To

perform a performance test on a scanner, accurate benchmarks are needed to perform

analysis such as the OWASP Benchmark. OWASP ZAP has better performance than

Arachni in the XSS vulnerability category. We can see that in the cross-site scriptimg

(XSS) vulnerability category OWASP ZAP has better performance than Arachni with

a detection accuracy value of 76% compared to Arachni's accuracy value of 64%.

And we can also see the difference in percentage distance between the detection

accuracy values of OWASP ZAP and Arachni that OWASP ZAP is 12% superior to

Arachni.

References

[1] L. Gashi, A. Luma, and A. Aliu, “A comprehensive review of cybersecurity

perspective for Wireless Sensor Networks,” in 2022 International Symposium on

Multidisciplinary Studies and Innovative Technologies (ISMSIT), 2022, pp. 392–395.

[2] M. G. Cains, L. Flora, D. Taber, Z. King, and D. S. Henshel, “Defining cyber security

and cyber security risk within a multidisciplinary context using expert elicitation,”

Risk Anal., vol. 42, no. 8, pp. 1643–1669, 2022.

[3] E. O. Yeboah-Boateng, Cyber-security challenges with smes in developing economies:

Issues of confidentiality, integrity & availability (CIA). Institut for Elektroniske

Systemer, Aalborg Universitet, 2013.

[4] G. P. Moynihan, “An executive information system: Planning for post-implementation

at NASA,” J. Syst. Manag., vol. 44, no. 7, p. 8, 1993.

[5] Y. Arta, M. Ilhan, and A. Hanafiah, “Analisis Kebutuhan Keamanan Informasi

Menggunakan Metode SQUARE Pada Aplikasi HRIS Studi Kasus: PT. XYZ,”

CogITo Smart J., vol. 7, no. 1, pp. 61–73, 2021.

[6] V. Clincy and H. Shahriar, “Web application firewall: Network security models and

configuration,” in 2018 IEEE 42nd Annual Computer Software and Applications

Conference (COMPSAC), 2018, vol. 1, pp. 835–836.

[7] M. Alfarizi and I. F. Ashari, “Vulnerability Analysis and Proven On The neonime. co

Website Using OWASP ZAP 4 and XSpear,” JTKSI (Jurnal Teknol. Komput. dan Sist.

Informasi), vol. 5, no. 2, pp. 75–81, 2022.

[8] A. Lathifah, F. B. Amri, and A. Rosidah, “Security Vulnerability Analysis of the

Sharia Crowdfunding Website Using OWASP-ZAP,” in 2022 10th International

Conference on Cyber and IT Service Management (CITSM), 2022, pp. 1–5.

[9] N. I. Daud, K. A. A. Bakar, and M. S. M. Hasan, “A case study on web application

vulnerability scanning tools,” in 2014 Science and Information Conference, 2014, pp.

595–600.

[10] S. Chen, “Price and feature comparison of web application scanners.” Online, 2017.

[11] A. Siswanto, Y. Arta, E. A. Kadir, and Bimantara, “Text File Protection Using Least

Significant Bit (LSB) Steganography and Rijndael Algorithm,” in Proceedings of

International Conference on Smart Computing and Cyber Security: Strategic

Foresight, Security Challenges and Innovation (SMARTCYBER 2020), 2021, pp. 205–

213.

[12] M. Vieira, N. Antunes, and H. Madeira, “Using web security scanners to detect

vulnerabilities in web services,” in 2009 IEEE/IFIP International Conference on

Dependable Systems & Networks, 2009, pp. 566–571.

[13] A. A. Almutairi, S. Mishra, and M. AlShehri, “Web Security: Emerging Threats and

Defense.,” Comput. Syst. Sci. Eng., vol. 40, no. 3, 2022.

[14] D. Sagar, S. Kukreja, J. Brahma, S. Tyagi, and P. Jain, “Studying open source

vulnerability scanners for vulnerabilities in web applications,” IIOAB J., vol. 9, no. 2,

pp. 43–49, 2018.

[15] Y. Makino and V. Klyuev, “Evaluation of web vulnerability scanners,” in 2015 IEEE

8th International Conference on Intelligent Data Acquisition and Advanced

Computing Systems: Technology and Applications (IDAACS), 2015, vol. 1, pp. 399–

402.

[16] A. Alzahrani, A. Alqazzaz, Y. Zhu, H. Fu, and N. Almashfi, “Web application security

tools analysis,” in 2017 ieee 3rd international conference on big data security on

cloud (bigdatasecurity), ieee international conference on high performance and smart

computing (hpsc), and ieee international conference on intelligent data and security

(ids), 2017, pp. 237–242.

[17] S. M. Srinivasan and R. S. Sangwan, “Web app security: A comparison and

categorization of testing frameworks,” IEEE Softw., vol. 34, no. 1, pp. 99–102, 2017.

[18] J. Li, “Vulnerabilities mapping based on OWASP-SANS: a survey for static

application security testing (SAST),” arXiv Prepr. arXiv2004.03216, 2020.

[19] F. Mateo Tudela, J.-R. Bermejo Higuera, J. Bermejo Higuera, J.-A. Sicilia Montalvo,

and M. I. Argyros, “On Combining Static, Dynamic and Interactive Analysis Security

Testing Tools to Improve OWASP Top Ten Security Vulnerability Detection in Web

Applications,” Appl. Sci., vol. 10, no. 24, p. 9119, 2020.

[20] A. Seth, S. Bhattacharya, S. Elder, N. Zahan, and L. Williams, “Comparing

Effectiveness and Efficiency of Interactive Application Security Testing (Iast) and

Runtime Application Self-Protection (Rasp) Tools in A Large Java-Based System,”

Available SSRN 4306114, 2022.

